Total number of printed pages-7
3 (Sem-6) MAT M 2
2020

MATHEMATICS

(Major)
Paper : 6•2
(Numerical Analysis)

$$
\text { Full Marks : } 60
$$

Time : Three hours
The figures in the margin indicate full marks for the questions.

1. Answer the following questions : $1 \times 7=7$
(a) If $\pi=\frac{22}{7}$ is approximated as $3 \cdot 14$, find the relative error and relative percentage error.
(b) Define 'absolute error'.
(c) Find the difference $\sqrt{2 \cdot 01}-\sqrt{2}$, correct to three significant figures.

Contd.
(d) If m and n are positive integers, then show that $\Delta^{m} \Delta^{n} f(x)=\Delta^{m+n} f(x)$.
(e) Evaluate $\Delta^{n}\left(\frac{1}{x}\right)$, with 1 as the interval of differencing.
(f) Give the relationship between the operator Δ and the differential operator D.
(g) Write the general quadrature formula in numerical integration.
2. Answer the following questions : $2 \times 4=8$
(a) Find the number of significant figures in $x=0.3941$ whose absolute error is 0.25×10^{-2}.
(b) Given $u_{0}=3, u_{1}=12, u_{2}=81, u_{3}=200$, $u_{4}=100$ and $u_{5}=8$, find $\Delta^{5} u_{0}$.
(c) What is numerical differentiation ? Explain briefly its importance.
(d) Derive trapezoidal rule from NewtonCotes quadrature formula.
3. Answer the following questions : $5 \times 3=15$
(a) Find the relative error for evaluation of $u=x_{1} x_{2}$ with $x_{1}=4.51, x_{2}=8.32$ having absolute errors $\Delta x_{1}=0.01$ in x_{1} and $\Delta x_{2}=0.01$ in x_{2}.
(b) Using the method of separation of symbols, prove the following :

$$
\left(u_{1}-u_{0}\right)-x\left(u_{2}-u_{1}\right)+x^{2}\left(u_{3}-u_{2}\right)-\ldots \ldots
$$

$$
=\frac{\Delta u_{0}}{1+x}-x \frac{\Delta^{2} u_{0}}{(1+x)^{2}}+x^{2} \frac{\Delta^{3} u_{0}}{(1+x)^{3}}-\ldots
$$

Or

Find the function whose first difference is $9 x^{2}+11 x+5$.
(c) A second degree polynomial passes through the points $(1,-1),(2,-1)$, $(3,1)$ and $(4,5)$. Find the polynomial.

Or

Using Lagrange's interpolation formula, find the form of the function given by :

$$
\begin{array}{c:cccc}
x & : & 3 & 2 & 1 \\
-1 \\
f(x) & : & 3 & 12 & 15
\end{array}-21
$$

4. Answer ary one part :
(a) (i) Apply Stirling's formula to find a polynomial of degree 4 which takes the following tabular values :

$$
\begin{array}{ccccccc}
x & : & 1 & 2 & 3 & 4 & 5 \\
y=f(x) & : & 1 & -1 & 1 & -1 & 1
\end{array}
$$

(ii) Using Newton's divided difference formula, construct the interpolating polynomial and hence compute $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ at $x=5$ using the following data :

x	$:$	0	2	3	4	7	9
y	$:$	4	26	58	112	466	922
						$5+5=10$	

(b) (i) Use Bessel's formula to find $y(0.12)$ from the following data :

x	$:$	0	0.05	0.1	0.15	0.2
y	$:$	0	0.10017	0.20134	0.30452	0.41075
0.52110						

(ii) Find the value of $\int_{1}^{5} \log _{10} x d x$, taking 8 subintervals, by trapezoidal rule.
$5+5=10$
5. Answer any one part :
(a) (i) In a machine a slider moves along a fixed straight rod. Its distance $x \mathrm{cms}$ along the rod is given below for various values of time t seconds. Find the velocity and acceleration of the slider when $t=0 \cdot 3$.

$t(\mathrm{sec}):$	0	0.1	0.2	0.3	0.4	0.5	0.6
$x(\mathrm{~cm})$	$:$	30.13	31.62	32.87	33.64	33.95	33.81
33.24							

(ii) The velocity $v(\mathrm{~km} / \mathrm{min})$ of a car which starts from rest, is given at fixed intervals of time $t(\min)$ as follows :

$v:$| 10 | 18 | 25 | 29 | 32 | 20 | 11 | 5 | 2 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Estimate approximately the distance covered in 20 minutes. $5+5=10$
(b) (i) Using Lagrange's formula and the following table, find $f^{\prime}(3)$ and $f^{\prime}(4)$:

x	$:$	1	2	4	8	10
$f(x)$	$:$	0	1	5	21	27

(ii) Find an approximate value of $\log _{e} 7$ using Simpson's rule to the
integral $\int_{1}^{7} \frac{d x}{x}$.

$$
5+5=10
$$

6. Answer any one part :
(a) (i) Derive the rate of convergence of the Secant method.
(ii) Compute the root of $e^{x}-3 x=0$, using bisection method, lying between 1.5 and $1 \cdot 6$, correct to two decimal places.

$$
5+5=10
$$

(b) (i) Using Newton-Raphson method, find the root of $x^{4}-x-10=0$, which is nearer to $x=2$, correct to three decimal places.
(ii) Find an approximate root of the equation $x^{3}+x-1=0$ near $x=1$, by the Regula-Falsi method, correct to two decimal places.

$$
5+5=10
$$

