Total number of printed pages-7 m m 11 (b)

3 (Sem-6) MAT M 2

2020

MATHEMATICS

(Major)

Paper : 6.2

(Numerical Analysis)

Full Marks : 60

Time : Three hours

The figures in the margin indicate full marks for the questions.

1. Answer the following questions : $1 \times 7 = 7$

- (a) If $\pi = \frac{22}{7}$ is approximated as 3.14, find the relative error and relative percentage error.
- (b) Define 'absolute error'.
- (c) Find the difference $\sqrt{2.01} \sqrt{2}$, correct to three significant figures.

Contd.

- (d) If m and n are positive integers, then show that $\Delta^m \Delta^n f(x) = \Delta^{m+n} f(x)$.
- (e) Evaluate $\Delta^n\left(\frac{1}{x}\right)$, with 1 as the interval of differencing.
- (f) Give the relationship between the operator Δ and the differential operator D.
- (g) Write the general quadrature formula in numerical integration.
- 2. Answer the following questions : $2 \times 4 = 8$
 - (a) Find the number of significant figures in x = 0.3941 whose absolute error is 0.25×10^{-2} .
 - (b) Given $u_0 = 3$, $u_1 = 12$, $u_2 = 81$, $u_3 = 200$,

 $u_4 = 100$ and $u_5 = 8$, find $\Delta^5 u_0$.

- (c) What is numerical differentiation ? Explain briefly its importance.
- (d) Derive trapezoidal rule from Newton-Cotes quadrature formula.

3. Answer the following questions : 5×3=15

- (a) Find the relative error for evaluation of $u = x_1 x_2$ with $x_1 = 4.51$; $x_2 = 8.32$ having absolute errors $\Delta x_1 = 0.01$ in x_1 and $\Delta x_2 = 0.01$ in x_2 .
- (b) Using the method of separation of symbols, prove the following :

$$(u_1-u_0)-x(u_2-u_1)+x^2(u_3-u_2) - \dots$$

$$= \frac{\Delta u_0}{1+x} - x \frac{\Delta^2 u_0}{(1+x)^2} + x^2 \frac{\Delta^3 u_0}{(1+x)^3} - \dots$$

Or

Find the function whose first difference is $9x^2+11x+5$.

 (c) A second degree polynomial passes through the points (1, -1), (2, -1), (3, 1) and (4, 5). Find the polynomial.

Or

Using Lagrange's interpolation formula, find the form of the function given by :

x	:	3	2	1	-1
f(x)	:	3	12	15	-21

3 (Sem-6) MAT M 2/G

3

Contd.

4. Answer any one part :

(a) (i) Apply Stirling's formula to find a polynomial of degree 4 which takes the following tabular values :

$$\begin{array}{c} x & : 1 & 2 & 3 & 4 & 5 \\ y = f(x) & : 1 & -1 & 1 & -1 & 1 \end{array}$$

(ii) Using Newton's divided difference formula, construct the interpolating polynomial and hence

> compute $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ at x=5using the following data :

> x : 0 2 3 4 7 9 y : 4 26 58 112 466 922 5+5=10

(b) (i) Use Bessel's formula to find y(0.12) from the following data :

x : 0 0.05 0.1 0.15 0.2 0.25 y : 0 0.10017 0.20134 0.30452 0.41075 0.52110

4

(*ii*) Find the value of $\int_{1}^{5} log_{10} x dx$, taking 8 subintervals, by

trapezoidal rule. 5+5=10

5. Answer any one part :

(a) (i) In a machine a slider moves along a fixed straight rod. Its distance $x \ cms$ along the rod is given below for various values of time tseconds. Find the velocity and acceleration of the slider when t = 0.3.

t(sec) : 0 0.1 0.2 0.3 0.4 0.5 0.6 x(cm) : 30.13 31.62 32.87 33.64 33.95 33.81 33.24

> (ii) The velocity v (km/min) of a car which starts from rest, is given at fixed intervals of time t (min) as follows :

t	:	2	4	6	8	10	12	14	16	18	20
υ	0.0	10	18	25	29	32	20	11	5	2	0

5

Estimate approximately the distance covered in 20 minutes. 5+5=10

3 (Sem-6) MAT M 2/G

Contd.

(b) (i) Using Lagrange's formula and the following table, find f'(3) and f'(4):

					8	
f(x)	:	0	1	5	21	27

 (ii) Find an approximate value of log_e 7 using Simpson's rule to the

integral
$$\int_{1}^{7} \frac{dx}{x}$$
.

5+5=10

6. Answer any one part :

(a) (i) Derive the rate of convergence of the Secant method.

(ii) Compute the root of $e^x - 3x = 0$, using bisection method, lying between 1.5 and 1.6, correct to two decimal places.

5+5=10

(b) (i) Using Newton-Raphson method, find the root of $x^4 - x - 10 = 0$, which is nearer to x=2, correct to three decimal places. (ii) Find an approximate root of the equation $x^3 + x - 1 = 0$ near x = 1, by the Regula-Falsi method, correct to two decimal places. 5+5=10

5500