Total number of printed pages-7

$$
3 \text { (Sem-6) MAT M } 4
$$

2020
\section*{MATHEMATICS}
(Major)
Paper: 6.4
(Discrete Mathematics)

$$
\text { Full Marks : } 60
$$

Time : Three hours
The figures in the margin indicate full marles for the questions.

1. Answer the following questions as directed:
$1 \times 7=7$
(a) Show that for any integer $n, 1$ divides n.
(b) If $\tau(n)$ is odd for an integer $n>1$, then
(i) n is odd

Contd.
(ii) n is even
(iii) n is a perfect square
(iv) n is a perfect square or twice a perfect square
(Choose the correct option)
(c) Give example of two integers a and b such that

$$
a^{2} \equiv b^{2}(\bmod 3) \text { but } a \equiv b(\bmod 3)
$$

(d) State Fermat's Little Theorem $\left(\mathrm{FLT}_{1}\right)$.
(e) Find the number of positive divisors of 7056.
(f) Write the absorption laws of propositional logic.
(g) Express 1225 as a sum of two squares.
2. Answer the following questions: $2 \times 4=8$
(a) If two co-prime integers a and b are such that a / c and b / c, then show that $a b / c$. Is this true when a and b are not co-prime ?
$1+1=2$

3 (Sem-6) MAT M 4/G 2
(b) Find the remainder when 2356710825 is divided by 37 .
(c) Express in disjunctive normal form :

$$
1+x_{2}^{\prime} x_{1}^{\prime}
$$

(d) If $f(n)=\prod_{d / n} g(d)$, then show that

$$
g(n)=\prod_{d / n}[f(d)]^{\mu\left(\frac{n}{d}\right)}
$$

3. Answer any three questions: $5 \times 3=15$
(a) If $a, b \in Z$, then show that a positive integer ' p ' is a prime if and only if

$$
p / a b \Rightarrow p / a \text { or } p / b
$$

(b) If (x, y, z) is a primitive solution of $x^{2}+y^{2}=z^{2}$, then show that one of x and y is even and the other is odd.
(c) If x and y are real numbers such that
(i) $[x+y]=[x]+[y]$ and
(ii) $[-x-y]=[-x]+[-y]$, then show that one of x or y is an integer and conversely.
(d) Show that a complete DNF is identically 1 .
(e) Show that if $a_{1}, a_{2}, \ldots, a_{k}$ form a $R R S(\bmod m)$ then $k=\phi(m)$.
4. Answer either [(a) and (b)] or [(c) and (d)]:
(a) If a and b are positive integers then prove that:
$\operatorname{gcd}(a, b) \times \operatorname{lcm}[a, b]=a b$
(b) If eggs are taken out from a basket two, three, four, five and six at a time, there are left over respectively one, two, three, four and five eggs. If they are taken out seven at a time, there are no eggs left over. How many eggs are there in the basket?
(c) If p is a prime then prove that there exist no positive integers a and b such that $a^{2}=p b^{2}$.
(d) Let p be a prime and $n \geq 1$ be any integer.

If $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}$ is
a polynomial of degree n modulo p, then show that the congruence $f(x) \equiv 0(\bmod p)$ has at most n mutually incongruent solution modulo p.
5. Answer either [(a) and (b)] or [(c) and (d)]:
(a) Show that an odd prime p can be represented as sum of two squares if and only if $p \equiv 1(\bmod 4)$
(b) If $n \geq 1$ is an integer then show that

$$
\prod_{d / n} d=n^{\tau(n) / 2}
$$

(c) Find all positive solutions of

$$
x^{2}+y^{2}=z^{2} \text { where } 0<z<30
$$

(d) If f and g are two arithmetic functions, then show that the following conditions are equivalent: 7
(i) $f(n)=\sum_{d / n} g(d)$
(ii) $\quad g(n)=\sum_{d / n} \mu(d) f\left(\frac{n}{d}\right)=\sum_{d / n} \mu\left(\frac{n}{d}\right) f(d)$
6. Answer either [(a) and (b)] or [(c) and (d)] :
(a) Define Boolean Algebra. If A is any finite set, then show that the power set $P(A)$ form a Boolean algebra. Show that there cannot exist a Boolean algebra with three elements.

$$
1+2+2=5
$$

(b) Determine whether the following argument is logically correct or not :
"If I study then I will not fail in discrete mathematics. If I do not play PUBG then I will study. But I failed in discrete mathematics. Therefore, I played PUBG."

3 (Sem-6) MAT M 4/G 6
(c) Find a switching circuit which realizes the Boolean expression:

$$
x(y(z+w)+z(u+v))
$$

(d) Show that the collection of connectives $\{\neg, \leftrightarrow, \vee\}$ is an adequate system. Hence deduce that $\{\neg, \wedge\}$ form an adequate system of connectives.
$5+2=7$

