Total number of printed pages-7

3 (Sem-6) MAT M 5

2020

MATHEMATICS

(Major)
Paper : $6 \cdot 5$
(Graph and Combinatories)

Full Marks : 60

Time : Three hours
The figures in the margin indicate full marks for the questions.

1. Answer the following questions :

$$
1 \times 7=7
$$

(a) The value of $2 P(n, n-2)$ is
(i) $P(2 n, n)$
(ii) $\quad P(n, n-2)$
(iii) $P(n, n)$
(iv) None of these.
(b) Find how many functions are there from X to Y where $X=\{1,2,3\}$, $Y=\{a, b, c\}$.
(c) The number of vertices of odd degree in a graph is -
(i) always even
(ii) always odd
(iii) can be even as well as odd
(iv) None of above.
(d) The number of vertex in a loop is :
(i) 0
(ii) 1
(iii) 2
(iv) 4
(e) Which of the following statements are true?
(i) Every cycle is a Hamiltonian graph.
(ii) Any graph obtained by adding edges to a Hamiltonian graph is also Hamiltonian.
(iii) A Hamiltonian graph always has a pendent vertex.
(iv) Trees are always Hamiltonian.
(f) Determine True or False of the following statement :
" $K_{3,3}$ is non-planar".
(g) Define Eulerian graph.
2. Answer the following questions : $2 \times 4=8$
(a) Prove that every graph is an intersection graph.
(b) Represent the graph $G(V, E)$ where the vertex set V and the edge set E are as follows :

$$
\begin{aligned}
& V=\{1,2,3,4\} \\
& E=\{(x, y): x+y \text { is odd }\}
\end{aligned}
$$

(c) A connected planar graph has nine vertices having degrees $2,2,2,3,3,3$, 4,4 and 5 . How many edges are there ?
(d) Does there exist a tree T with 8 vertices such that, the sum of degree of vertices is 16 ? Justify your answer.
3. Answer the following questions : $5 \times 3=15$
(a) Find the number of integers between 1 and 250 that are divisible by any of the integers 2,3 and 7 .
(b) There exists no simple graph corresponding to the following degree sequences $2,2,4,4,2$. Justify the above statement.

Or

Show that a complete graph with n vertices consists of $\frac{n(n-1)}{2}$ edges.
(c) Prove that a connected graph is bipartite if and only if it contains no odd cycles.

Or

If a graph G is a tree then prove that every two vertices of G are joined by unique path.
4. Answer any one part:
(a) Prove that a connected graph G is Eulerian if and only if every vertex of G has even degree.
(b) (i) For a graph G, prove that

$$
K(G) \leq \lambda(G) \leq \delta(G)
$$

The symbols have their usual meaning.
(ii) Among all graphs with p vertices and q edges, prove that the maximum connectivity is 0 when

$$
q<p-1 \text { and }\left[\frac{2 q}{p}\right] \text { when } q \geq p-1
$$

$$
4
$$

5. Answer any one part :

(a) If in a graph G has $n \geq 3$ vertices and every vertices has degree at least $\frac{n}{2}$, then G is Hamiltonian.
(b) Let G be a graph of n vertices. If the sum of the degrees of each pair of vertices in G is $n-1$ or larger, then prove that there exists a Hamiltonian path in G.
6. Answer any one part :
(a) (i) In how many ways can 21 identical books on English and 19 identical books on Hindi be placed in a row on a shelf, so that two books on Hindi may not be together ?
(ii) Enumerate the number of nonnegative integral to the inequality

$$
\begin{equation*}
x_{1}+x_{2}+x_{3}+x_{4}+x_{5} \leq 19 \tag{6}
\end{equation*}
$$

(b) (i) How many outcomes are possible by casting a 6 faced die 10 times ?
(ii) How many integers solution are there to the equation

$$
\begin{aligned}
& x_{1}+x_{2}+x_{3}+x_{4}=13, \quad 0 \leq x_{i} \leq 5 \\
& i=1,2,3,4 ?
\end{aligned}
$$

