3 (Sem-5) CHM M 1

2018

CHEMISTRY (Major)

Paper : 5.1

(Quantum Chemistry)

Full Marks: 60

Time : 3 hours

The figures in the margin indicate full marks for the questions

Symbols used signify their usual meanings

1. Answer in brief :

1×7=7

- (a) Find the eigenvalue for the operator $\frac{d^2}{dx^2}$ if the function is $\cos 4x$.
- (b) An operator \hat{O} is defined as $\hat{O}\psi = \lambda\psi$, where λ is a constant. Show whether the operator is linear or not.
- (c) Show whether the function $\psi = e^{-x}$ is well-behaved or not within the interval $0 \le x \le \infty$.

A9/278

(Turn Over)

Or

One of the conditions for a function to be well-behaved is that the function must be single-valued. State why the function has to be single-valued.

- (d) Draw a diagram to show the orientations of the orbital angular momentum of magnitude $\sqrt{2}\hbar$ in presence of the applied magnetic field in the z-direction.
- (e) Find the term symbol for an electron in the *d*-orbital.
- (f) Write the value of the angular function for s-orbital.

Or

Define the shape of an orbital.

- (g) For the ground-state H-atom, write the wave functions for the spin-orbital.
- 2. Answer the following questions : 2×4=8
 - (a) Find the operator for total energy of a particle with mass m having coordinate (x, y, z).

A9/278

(Continued)

(b) Normalize the function $\sin \frac{n \pi x}{a}$ within the interval $0 \le x \le a$. Here $n = 1, 2, 3, \cdots$.

Or

Show that the functions $\sin \frac{\pi x}{a}$ and $\cos \frac{\pi x}{a}$ are orthogonal within the interval $0 \le x \le a$.

- (c) Let ψ₁ and ψ₂ be the eigenfunctions of the linear operator Ô, having the same eigenvalue λ. Show that the linear combination of ψ₁ and ψ₂ is also an eigenfunction of Ô having the same eigenvalue.
- (d) Consider the following sets of quantum numbers :
 - (i) $n = 2, l = 0, m_l = 0$
 - (ii) $n = 2, l = 1, m_l = 0$
 - (iii) $n = 2, l = 1, m_l = +1$
 - (iv) $n = 2, l = 1, m_l = -1$

State which of these sets yield imaginary wave functions. State how real functions are obtained from these imaginary functions.

Or

Taking $2p_z$ -orbital as example, write why the *p*-orbital is dumbbell in shape.

A9/278

(Turn Over)

(4)

3. What do you mean by complete wave function? Using Pauli's anti-symmetry principle, prove that no two electrons of an atom can have all the four quantum numbers alike.

Or

What do you mean by spin-orbit interaction? Write in brief about the Russell-Saunders scheme of coupling of angular momenta. Find the term symbols for the first excited state of He-atom. 1+2+2=5

- **4.** Answer any *two* questions : 5×2=10
 - (a) Write the time-independent Schrödinger equation for H_2^+ . State Born-Oppenheimer approximation. Discuss how this approximation can be applied to separate the Schrödinger equation for H_2^+ into two equations—one for the nuclei and the other for the electron.

1+1+3=5

(b) Applying Hückel molecular orbital method, calculate the π -bond energy of ethene. Also find the expressions for the π -molecular orbitals. 3+2=5

A9/278

(Continued)

- (5)
- (c) Write how the molecular orbitals of a homonuclear diatomic molecule can be classified as σ or π . Which of these two is doubly degenerate and why? What is the basis of classifying the MOs as g or u? 2+2+1=5

5. Answer either (a) and (b) or (c), (d) and (e) :

- (a) A particle of mass m is moving within a box of lengths a, b and c along x-, yand z-axes respectively. The potential energy within the box is considered to be zero; outside the box it is considered to be infinity. Solve the time-independent Schrödinger equation for the particle to get the values of the wave function and the energy. Use these results to explain degeneracy. 4+2=6
- (b) Calculate the zero-point vibrational energy of HCl if its force constant is 516 Nm^{-1} .

Or

 (c) State the experimental observation of the photoelectric effect. Discuss how Einstein explained the observation. 3+2=5

A9/278

(Turn Over)

4

(6)

- (d) A particle of mass m is moving in a onedimensional box of length a, where potential energy is zero. Calculate the average kinetic energy of the particle.
- (e) An electron is confined to a molecule of length 10^{-9} m. Considering the electron to be a particle in one-dimensional box, where V = 0, calculate its minimum energy.
- 6. Answer either (a), (b) and (c) or (d), (e) and (f) :
 - (a) Define radial distribution function. Deduce an expression for the radial distribution function for non-s state.

1+3=4

3

3

- (b) Explain what you mean by space quantization.
- (c) Calculate the average value of potential energy of the electron of H-atom in the 1s state.

Or

(d) What do you mean by radial function? Give the plots of radial function against r for n = 2. State what information you can draw from these plots. 1+1+2=4

A9/278

(Continued)

2

3

State Hund's rule of maximum (e) multiplicity. For the $2p^2$ electrons of the ground-state C-atom, the following terms are obtained :

$${}^{1}D_{2}, {}^{3}P_{2}, {}^{3}P_{1}, {}^{3}P_{0}, {}^{1}S_{0}$$

Using Hund's rule, state which of these terms will be the lowest in energy. 2+1=3

- Show that the maximum probability of (f)finding the electron of the ground-state H-like atom is at $r = a_0/z$.
- Answer either (a) and (b) or (c) and (d): 7.
 - (a)Write the energy expressions for the bonding and the anti-bonding molecular orbitals of H2. Hence explain how the potential energy diagram is constructed. Write what information can be drawn 1+3+2=6from this diagram.
 - Write the approximations of the Hückel (b) molecular orbital theory.

Or

Write the ground-state molecular orbital (c)wave function of H2. Hence explain the drawback of the molecular orbital theory in case of H2. State how Heitler and London modified the wave function.

1+3+1=5

3

4

(Turn Over)

A9/278

(d) Using LCAO-MO method, deduce the secular equations of H⁺₂. Hence deduce the expressions for the MO wave functions and their energies.

(8)

Standard integration : $\int_0^\infty x^n e^{-ax} dx = \frac{n!}{a^{n+1}}$

5

* * *

A9-5500/278