3 (Sem-5) CHM M 1

2018

CHEMISTRY

(Major)

Paper : 5.1

(Quantum Chemistry)

Full Marks : 60
Time : 3 hours

The figures in the margin indicate full marks for the questions

Symbols used signify their usual meanings

1. Answer in brief : $1 \times 7=7$
(a) Find the eigenvalue for the operator $\frac{d^{2}}{d x^{2}}$ if the function is $\cos 4 x$.
(b) An operator \hat{O} is defined as $\hat{O} \psi=\lambda \psi$, where λ is a constant. Show whether the operator is linear or not.
(c) Show whether the function $\psi=e^{-x}$ is well-behaved or not within the interval $0 \leq x \leq \infty$.

12)

Or

One of the conditions for a function to be well-behaved is that the function must be single-valued. State why the function has to be single-valued.
(d) Draw a diagram to show the orientations of the orbital angular momentum of magnitude $\sqrt{2} \hbar$ in presence of the applied magnetic field in the z-direction.
(e) Find the term symbol for an electron in the d-orbital.
(f) Write the value of the angular function for s-orbital.

Or

Define the shape of an orbital.
(g) For the ground-state H -atom, write the wave functions for the spin-orbital.
2. Answer the following questions :
(a) Find the operator for total energy of a particle with mass m having coordinate (x, y, z).
(b) Normalize the function $\sin \frac{n \pi x}{a}$ within the interval $0 \leq x \leq a$. Here $n=1,2,3, \cdots$.

Or

Show that the functions $\sin \frac{\pi x}{a}$ and $\cos \frac{\pi x}{a}$ are orthogonal within the interval $0 \leq x \leq a$.
(c) Let Ψ_{1} and Ψ_{2} be the eigenfunctions of the linear operator \hat{O}, having the same eigenvalue λ. Show that the linear combination of Ψ_{1} and ψ_{2} is also an eigenfunction of \hat{O} having the same eigenvalue.
(d) Consider the following sets of quantum numbers :
(i) $n=2, l=0, m_{l}=0$
(ii) $n=2, l=1, m_{l}=0$
(iii) $n=2, l=1, m_{l}=+1$
(iv) $n=2, l=1, m_{l}=-1$

State which of these sets yield imaginary wave functions. State how real functions are obtained from these imaginary functions.

Or

Taking $2 p_{z}$-orbital as example, write why the p-orbital is dumbbell in shape.

(4)

3. What do you mean by complete wave function? Using Pauli's anti-symmetry principle, prove that no two electrons of an atom can have all the four quantum numbers alike.
$1+4=5$

Or

What do you mean by spin-orbit interaction? Write in brief about the Russell-Saunders scheme of coupling of angular momenta. Find the term symbols for the first excited state of He -atom.
4. Answer any two questions :
(a) Write the time-independent Schrödinger ${ }^{\bullet}$ equation for H_{2}^{+}. State BornOppenheimer approximation. Discuss how this approximation can be applied to separate the Schrödinger equation for H_{2}^{+}into two equations-one for the nuclei and the other for the electron.

$$
1+1+3=5
$$

(b) Applying Hückel molecular orbital method, calculate the π-bond energy of ethene. Also find the expressions for the π-molecular orbitals.
$3+2=5$

(5)

(c) Write how the molecular orbitals of a homonuclear diatomic molecule can be classified as σ or π. Which of these two is doubly degenerate and why? What is the basis of classifying the MOs as g or u ?

$$
2+2+1=5
$$

5. Answer either (a) and (b) or (c), (d) and (e) :
(a) A particle of mass m is moving within a box of lengths a, b and c along x-, y and z-axes respectively. The potential energy within the box is considered to be zero; outside the box it is considered to be infinity. Solve the time-independent Schrödinger equation for the particle to get the values of the wave function and the energy. Use these results to explain degeneracy. $4+2=6$
(b) Calculate the zero-point vibrational energy of HCl if its force constant is $516 \mathrm{Nm}^{-1}$.

Or

(c) State the experimental observation of the photoelectric effect. Discuss how Einstein explained the observation. $3+2=5$

16)

(d) A particle of mass m is moving in a onedimensional box of length a, where potential energy is zero. Calculate the average kinetic energy of the particle.
(e) An electron is confined to a molecule of length $10^{-9} \mathrm{~m}$. Considering the electron to be a particle in one-dimensional box, where $V=0$, calculate its minimum energy.
6. Answer either (a), (b) and (c) or (d), (e) and (f):
(a) Define radial distribution function. Deduce an expression for the radial distribution function for non-s state.
(b) Explain what you mean by space quantization.
(c) Calculate the average value of potential energy of the electron of H -atom in the 1s state.

Or

(d) What do you mean by radial function? Give the plots of radial function against r for $n=2$. State what information you can draw from these plots. $1+1+2=4$

(7)

(e) State Hund's rule of maximum multiplicity. For the $2 p^{2}$ electrons of the ground-state C -atom, the following terms are obtained :

$$
{ }^{1} D_{2},{ }^{3} P_{2},{ }^{3} P_{1},{ }^{3} P_{0},{ }^{1} S_{0}
$$

Using Hund's rule, state which of these terms will be the lowest in energy. $2+1=3$
(f) Show that the maximum probability of finding the electron of the ground-state H -like atom is at $r=a_{0} / z$.
7. Answer either (a) and (b) or (c) and (d) :
(a) Write the energy expressions for the bonding and the anti-bonding molecular orbitals of H_{2}^{+}. Hence explain how the potential energy diagram is constructed. Write what information can be drawn from this diagram.
(b) Write the approximations of the Hückel molecular orbital theory.

Or
(c) Write the ground-state molecular orbital wave function of H_{2}. Hence explain the drawback of the molecular orbital theory in case of H_{2}. State how Heitler and London modified the wave function.

$$
1+3+1=5
$$

(d) Using LCAO-MO method, deduce the secular equations of H_{2}^{+}. Hence deduce the expressions for the MO wave functions and their energies. 5

Standard integration :

$$
\int_{0}^{\infty} x^{n} e^{-a x} d x=\frac{n!}{a^{n+1}}
$$

* *

