3 (Sem-1/CBCS) CHE HC 1

2019

CHEMISTRY

(Honours)

Paper : CHE-HC-1016

(Inorganic Chemistry-I)

Full Marks: 60

Time : 3 hours

The figures in the margin indicate full marks for the questions

- 1. Choose the correct answer from the following : 1×7=7
 - (a) Maximum number of electron possible in N shell of an atom of an element is

(i)	18	(ii)	8
(iii)	28	(iv)	32

(b) Physically meaningful quantity is given by

(i) only ψ

(ii) only ψ^2

(iii) both ψ and ψ^2

(iv) none of ψ and ψ^2

20A/595

(Turn Over)

OH 3HO (2080) (2)

- (c) In the long form of modern periodic table, element 49 has the position at
 - (i) group 12 of 4th period
 - (ii) group 13 of 5th period
 - (iii) group 13 of 4th period
 - (iv) group 15 of 4th period
- (d) The radii of Mg^{2+} and O^{2-} ions are 0.66 Å and 1.40 Å, and that of B^{3+} and O^{2-} ions are 0.23 Å and 1.40 Å respectively. The crystals formed by MgO and B_2O_3 have shapes respectively
 - (i) octahedral and trigonal planar
 - (ii) tetrahedral and octahedral
 - (iii) octahedral and cubic
 - (iv) trigonal planar and octahedral
- (e) The van der Waals' forces active in solid I₂ are
 - (i) ion-dipole forces
 - (ii) dipole-dipole interactions
 - (iii) induced dipole interactions
 - (iv) zero

20A/595

(Continued)

- *(f)*
- The half-cell reaction of two redox systems are as follows :

 $2 \text{Hg}^{2+} + 2e^- \rightleftharpoons \text{Hg}_2^{2+}, \ E_{el}^{\circ} = +0.92$ $\text{Sn}^{4+} + 2e^- \rightleftharpoons \text{Sn}^{2+}, \ E_{el}^{\circ} = +0.15$

If the two half cells are linked to give a cell, then

- (i) Hg₂²⁺ will be oxidized and Sn⁴⁺ will be reduced
- (ii) Hg²⁺ will be reduced and Sn²⁺ will be oxidized
- (iii) both Hg²⁺ and Sn²⁺ will be oxidized
- (iv) both Hg^{2+} and Sn^{2+} will be reduced
- (g) When you prepare $KMnO_4$ and $H_2C_2O_4 \cdot 2H_2O$ solution by transferring a measured amount of these from chemical balance, then it is necessary to standardize
 - (i) both $KMnO_4$ and $H_2C_2O_4 \cdot 2H_2O$ solution
 - (ii) only H₂C₂O₄·2H₂O solution, but not KMnO₄
 - (iii) only $KMnO_4$, but not $H_2C_2O_4 \cdot 2H_2O$ solution
 - (iv) none of $KMnO_4$ and $H_2C_2O_4 \cdot 2H_2O$ solution

20A/595

(Turn Over)

2. Answer the following questions : 2×4=8

- (a) Deduce de Broglie equation of waveparticle duality.
- (b) Write Born-Landé equation with meaning of all the terms involved. From this equation, predict which of CaO and Al₂(SO₄)₃ has higher lattice energy.
- (c) Define the terms 'bond moment' and 'dipole moment'. Taking an example, explain that bond moment in a molecule does not lead to a non-zero dipole moment in the molecule.
- (d) Isolate the equation in acidic medium $MnO_4^- + I^- \rightarrow I_2 + Mn^{2+}$ into oxidized half reaction and reduced half reaction and balance the two parts separately and write down the overall balanced reaction.
- **3.** Answer the following questions : 5×3=15
 - (a) Find an expression for energy of hydrogen atom. Write the Schrödinger's wave equation for the electron in hydrogen atom.

20A/595

(Continued)

(4)

Or

Draw the proper diagram of *p*-orbitals and *d*-orbitals of an atom. Write the values of all the quantum numbers for an atom when n = 3. 3+2=5

- (b) Define electronegativity and deduce the expression for Pauling electronegativity scale. Calculate the electronegativity of carbon atom following Allred-Rochow's approach. (Covalent radius of carbon atom is 0.77 Å) 1+2+2=5
- (c) Discuss Heitler-London approach of valence bond theory.

Or

- (i) What is solvation energy? Discuss the mechanism of dissolution of an ionic solute in a polar solvent.
- (ii) Calculate the formal charge of P and H in PH₃.
- 4. Answer the following questions (any three) :

 $10 \times 3 = 30$

5

3

2

 (i) What are the factors that affect ionization energy? Discuss its periodic trend. Why does successive ionization enthalpy of atom of an element increase immensely? 1+2+2=5

20A/595

(Turn Over)

- (ii) State Slater's rule. Calculate the effective nuclear charge at the periphery of chromium atom. 3+2=5
- (b) (i) Draw Lewis dot picture for NO and $CO_3^{2^-}$.
 - (ii) Give a neat molecular orbital diagram of N_2 . Identify HOMO and LUMO in this diagram. Is it possible to obtain an N_2^+ molecular ion? Justify it. 3+1+1=5
 - (iii) What is non-bonding molecular orbital? Explain it with appropriate example. 1+2=3
 - (i) Explain the terms 'radial' and 'angular' wave functions for hydrogen atom. Draw radial probability distribution curve for hydrogen atom when n = 2. 3+2=5
 - (ii) What are the two basic postulates of VSEPR theory? Is it possible to give suitable explanation for the shape of PCl_3F_2 molecule by VSEPR theory? Elaborate your answer. 2+3=5
- (d) (i) State and explain Hund's rule of maximum multiplicity.

20A/595

(c)

(Continued)

2

2

(6)

(ii) How does electronegativity change in sp, sp^2 and sp^3 hybridization?

2

3

3

- (iii) Apply molecular orbital theory to CO molecule.
- (iv) Describe the theory involved in estimation of Fe²⁺ ion in a given solution of unknown strength.

3 (Sem-1/CBCS) CHE HC 1

20A-4500/595

(7)