3 (Sem-1/CBCS) CHE HC 1

2019

CHEMISTRY

(Honours)
Paper : CHE-HC-1016

(Inorganic Chemistry-I)

Full Marks : 60
Time : 3 hours
The figures in the margin indicate full marks
for the questions

1. Choose the correct answer from the following :
(a) Maximum number of electron possible in N shell of an atom of an element is
(i) 18
(ii) 8
(iii) 28
(iv) 32
(b) Physically meaningful quantity is given by
(i) only ψ
(ii) only ψ^{2}
(iii) both ψ and ψ^{2}
(iv) none of ψ and ψ^{2}
(c) In the long form of modern periodic table, element 49 has the position at
(i) group 12 of 4th period
(ii) group 13 of 5 th period
(iii) group 13 of 4 th period
(iv) group 15 of 4th period
(d) The radii of Mg^{2+} and O^{2-} ions are $0.66 \AA$ and $1.40 \AA$, and that of B^{3+} and O^{2-} ions are $0.23 \AA$ and $1.40 \AA$ respectively. The crystals formed by MgO and $\mathrm{B}_{2} \mathrm{O}_{3}$ have shapes respectively
(i) octahedral and trigonal planar
(ii) tetrahedral and octahedral
(iii) octahedral and cubic
(iv) trigonal planar and octahedral
(e) The van der Waals' forces active in solid I_{2} are
(i) ion-dipole forces
(ii) dipole-dipole interactions
(iii) induced dipole interactions
(iv) zero
(f) The half-cell reaction of two redox systems are as follows :

$$
\begin{aligned}
& 2 \mathrm{Hg}^{2+}+2 e^{-} \rightleftharpoons \mathrm{Hg}_{2}^{2+}, \quad E_{\mathrm{el}}^{\circ}=+0.92 \\
& \mathrm{Sn}^{4+}+2 e^{-} \rightleftharpoons \mathrm{Sn}^{2+}, \quad E_{\mathrm{el}}^{\circ}=+0.15
\end{aligned}
$$

If the two half cells are linked to give a cell, then
(i) Hg_{2}^{2+} will be oxidized and Sn^{4+} will be reduced
(ii) Hg^{2+} will be reduced and Sn^{2+} will be oxidized
(iii) both Hg^{2+} and Sn^{2+} will be oxidized
(iv) both Hg^{2+} and Sn^{2+} will be reduced
(g) When you prepare KMnO_{4} and $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ solution by transferring a measured amount of these from chemical balance, then it is necessary to standardize
(i) both KMnO_{4} and $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ solution
(ii) only $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ solution, but not KMnO_{4}
(iii) only KMnO_{4}, but not $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ solution
(iv) none of KMnO_{4} and $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ solution

(4)

2. Answer the following questions :
(a) Deduce de Broglie equation of waveparticle duality.
(b) Write Born-Lande equation with meaning of all the terms involved. From this equation, predict which of CaO and $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ has higher lattice energy.
(c) Define the terms 'bond moment' and 'dipole moment'. Taking an example, explain that bond moment in a molecule does not lead to a non-zero dipole moment in the molecule.
(d) Isolate the equation in acidic medium $\mathrm{MnO}_{4}^{-}+\mathrm{I}^{-} \rightarrow \mathrm{I}_{2}+\mathrm{Mn}^{2+}$ into oxidized half reaction and reduced half reaction and balance the two parts separately and write down the overall balanced reaction.
3. Answer the following questions :
(a) Find an expression for energy of hydrogen atom. Write the Schrödinger's wave equation for the electron in hydrogen atom. $\quad 4+1=5$

(5)

Or
Draw the proper diagram of p-orbitals and d-orbitals of an atom. Write the values of all the quantum numbers for an atom when $n=3 . \quad 3+2=5$
(b) Define electronegativity and deduce the expression for Pauling electronegativity scale. Calculate the electronegativity of carbon atom following Allred-Rochow's approach. (Covalent radius of carbon atom is $0.77 \AA$) $1+2+2=5$
(c) Discuss Heitler-London approach of
valence bond theory.

Or
(i) What is solvation energy? Discuss the mechanism of dissolution of an ionic solute in a polar solvent.
(ii) Calculate the formal charge of P and H in PH_{3}.
4. Answer the following questions (any three) :

$$
10 \times 3=30
$$

(a) (i) What are the factors that affect ionization energy? Discuss its periodic trend. Why does successive ionization enthalpy of atom of an element increase immensely? $1+2+2=5$

16)

(ii) State Slater's rule. Calculate the effective nuclear charge at the periphery of chromium atom. $\quad 3+2=5$
(b) (i) Draw Lewis dot picture for NO and CO_{3}^{2-}.
(ii) Give a neat molecular orbital diagram of N_{2}. Identify HOMO and LUMO in this diagram. Is it possible to obtain an N_{2}^{+}molecular ion? Justify it. $3+1+1=5$
(iii) What is non-bonding molecular orbital? Explain it with appropriate example.
(c) (i) Explain the terms 'radial' and 'angular' wave functions for hydrogen atom. Draw radial probability distribution curve for hydrogen atom when $n=2$.
(ii) What are the two basic postulates of VSEPR theory? Is it possible to give suitable explanation for the shape of $\mathrm{PCl}_{3} \mathrm{~F}_{2}$ molecule by VSEPR theory? Elaborate your answer.
(d) (i) State and explain Hund's rule of maximum multiplicity.

(7)

(ii) How does electronegativity change in $s p, s p^{2}$ and $s p^{3}$ hybridization?
(iii) Apply molecular orbital theory to CO molecule.
(iv) Describe the theory involved in estimation of Fe^{2+} ion in a given solution of unknown strength.

