3 (Sem-1/CBCS) CHE HC 2

2019

CHEMISTRY

(Honours)

Paper : CHE-HC-1026

(Physical Chemistry-I)

Full Marks : 60 Time : 3 hours

The figures in the margin indicate full marks for the questions

1. Answer the following as directed : $1 \times 7 = 7$

(a) From kinetic gas equation, show that PV = constant for an ideal gas at constant temperature.

(b) A gas can be liquefied, when (i) $T > T_c$; $P = P_c$ (ii) $T < T_c$; $P < P_c$ (iii) $T < T_c$; $P > P_c$ (iv) $T = T_c$; $P < P_c$

(Choose the correct option)

20A/596

(Turn Over)

(c) Define vapour pressure of a liquid.

(d) In a cubic crystal, there are _____ C₄ axes of symmetry, _____ C₃ axes of symmetry and six C₂ axes of symmetry.

(Fill in the blanks)

- (e) Explain why non-stoichiometric form of NaCl is yellow in colour.
- (f) Explain why pH of 1×10^{-8} mol dm⁻³ hydrochloric acid solution is not 8.
- (g) An aqueous solution of Na₂CO₃ is basic. Explain.
- **2.** Answer the following questions : 2×4=8
 - (a) Define mean free path of a gas. How does mean free path of a gas vary with temperature and pressure?
 - (b) Give a qualitative idea about the structure of water.
 - (c) State the symmetry elements present in the following molecules :

$$H_2O; C_6H_6$$

20A/596

(Continued)

- (d) The pH value of a solution containing equimolar concentrations of a weak acid and its salt is 5.0. Calculate the K_a value of the weak acid.
- 3. Answer any three of the following questions :
 - 5×3=15
 - (a) Derive the van der Waals' equation for a gas. Explain why van der Waals' equation cannot 'be considered as a generalized equation of state for real gases.
 - (b) What is critical state of a gas? Derive the expressions for critical constants in terms of the van der Waals' constants.
 - (c) Derive the Bragg's equation. In an experiment on a crystal using X-rays of wavelength 10^{-10} m, the value of angle of incidence for the first-order reflection was found to be 30°. Calculate the interplanar distance of the crystal.
 - (d) For a weak monobasic acid, show that the degree of ionization at a given temperature is inversely proportional to the square root of the initial concentration of the acid. Give the expressions for dissociation constants of carbonic acid.

20A/596

(Turn Over)

(e) Define solubility product of a sparingly soluble salt solution. Give the conditions for precipitation in terms of solubility product. 50 mL of $0.01 \text{ mol dm}^{-3} \text{ AgNO}_3$ solution is mixed with 50 mL of $0.001 \text{ mol dm}^{-3}$ aqueous NaCl solution. Predict whether AgCl will be precipitated or not. Given $K_{sp}(\text{AgCl}) = 1.7 \times 10^{-10}$.

4. (a) Answer either [(i) and (ii)] or [(iii), (iv) and (v)]:

- (i) Give the postulates of kinetic molecular model of a gas. On the basis of these postulates, derive the kinetic gas equation. 3+4=7
- (ii) Two flasks A and B have equal volumes. Flask A contain H_2 gas at 300 K, while flask B contains equal mass of C_2H_6 gas at 900 K. If both the gases behave ideally, answer the following :

In which flask the molecules will have higher average speed and how many times than the average speed of the other?

20A/596

(Continued)

3

- (iii) Derive an expression for root-meansquare speed of gas molecules from the expression for Maxwell distribution of molecular speeds of the gas.
- (iv) Show that root-mean-square speed of hydrogen gas is four times that of oxygen gas at the same temperature.
- (v) Derive an expression for reduced equation of state for any substance. State the law of corresponding states.
- (b) Answer either [(i), (ii) and (iii)] or [(iv), (v) and (vi)]:
 - (i) How does viscosity of gas differ from that of liquid?
 - (ii) Describe a method with theory commonly used for the measurement of viscosity of a liquid.
 - (iii) What are liquid crystals? Give the structural difference between smectic and nematic liquid crystals.
 Give two applications of liquid crystals.
 - *(iv)* Define the terms—symmetry element, plane of symmetry and centre of symmetry.

20A/596

(Turn Over)

2

4

3

3

3

(v) What are Bravais lattices? How can the following crystal systems be characterized?

Cubic; orthorhombic

Give one example each of these two crystal systems.

- (vi) What are Schottky and Frenkel defects? Give example of each of these two defects.
- (c) Answer either [(i), (ii) and (iii)] or [(iv), (v) and (vi)]:
 - (i) Define pH of a solution. Give the limitations of pH scale. Calculate pH of a solution obtained by mixing 50 mL 0.1 mol dm⁻³ HCl solution with 50 mL 0.2 mol dm⁻³ NaOH solution at 298 K.
 - (ii) Discuss briefly about the following: 2
 Applications of buffers in qualitative analysis of salt sample.
 - (iii) Obtain an expression for hydrolysis constant for the hydrolysis of CH₃COONH₄ salt.
 - (iv) What are acid-base indicators? Give examples. Discuss briefly the Ostwald's theory of acid-base indicators. 1+1+3=5

3

4

.

3

20A/596

(Continued)

(7)

(v) State with reasons, what indicators you would choose for the following titrations :

NaOH vs. CH₃COOH; Na₂CO₃ vs. HCl

(vi) Calculate the solubility of Mg (OH)₂ in pure water at 298 K. Given K_{sp} for Mg (OH)₂ at 298 K is 1.20×10^{-11} .

20A-4500/596

3

2