Total No. of printed pages = 6

3 (Sem 6) CHM M4

2015

CHEMISTRY

(Major)

Theory Paper : M-6.4

(Inorganic Chemistry)

Full Marks - 60

Time - Three hours

The figures in the margin indicate full marks for the questions.

- 1. Answer the following questions : $1 \times 7 = 7$
 - (a) What is the ground state term for the high spin d⁵ configuration in O_k symmetry ?
 - (b) Why are transition metals such as Mn, Fe, Co and Cu needed in photosynthesis and respiration rather than metals such as Zn, Ga or Ca ?
 - (c) What are exoergic and endoergic nuclear reactions ?

[Turn over

- (d) Why do many square planar complexes have two-term rate laws for ligand replacement reactions ?
- (e) Why is +3 oxidation state the characteristic oxidation state of lanthanides though the atoms in the series contain only two electrons in the outermost shell (6s²) ?
- (f) What is hole formalism ?
- (g) What is the principal function of nitrogenase?

2. Answer the following :

 $2 \times 4 = 8$

- (a) Write the mechanism of the following reaction : [(NH₃)₅CoCl]²⁺ + OH⁻ →[(NH₃)₅Co(OH)]²⁺ + Cl⁻
- (b) Classify the following configurations as A, E, T in complexes having O_h symmetry $t_{2g}^4 e_g^2, t_{2g}^6$.
- (c) What are the observations in connection with beta-emission that lead to the neutrino hypothesis ? How are neutrinos detected ?
- (d) What are the effects of increase of nitrate and nitrite ion concentration in drinking water ?

30/3 (Sem 6) CHM M4 (2)

3. Answer any *three* of the following : $5 \times 3 = 15$

- (a) [Fe(H₂O)₆]²⁺ has a two-humped absorption peak near 1000 nm. By using the appropriate diagram account for the most likely origin of this absorption. Then, account for the splitting of the absorption band.
- (b) Write briefly about photosynthesis in chloroplast membrane clearly describing the electron transfer chains and the role played by PS-I and PS-II.
- (c) Determine the possible microstates for an s¹p¹ configuration and use them to prepare a microstate table.
- (d) Explain what do you mean by radioactive equilibrium and state the conditions under which such equilibrium is established. What do you mean by secular and transient equilibrium ? Give necessary expressions and decay curves.
- (e) Give an account of the magnetic properties of actinide elements and compare them with transition elements (d-block).

30/3 (Sem 6) CHM M4 (3)

[Turn over

4. Answer any *three* from the following : $10 \times 3 = 30$

- (a) (i) Using the theory of redox titrations show the problems associated with the estimation of Fe^{2+} by standardized KMnO₄ solution in hydrochloric acid medium. Explain suggesting appropriate reasons, how you would overcome this problem. 5
 - (ii) Write very briefly about the role of metal salts in diet, diagnosis, chemotherapy and medicine.
- (b) (i) The thermodynamic parameters for Cd²⁺ complexes [Cd (CH₃NH₂)₄]²⁺ and [Cd(en)₂]2⁺, en=ethylenediamine, are given below :

Ligand	ΔH ^o	ΔS°	
	(kJmol ⁻¹)	$\overline{(J/mol \cdot K)}$	
4CH_NH_	-57.3	-67.3	
2en	-56.5	+14.1	
Ligand	$-T.\Delta S^{\circ}$	ΔG°	logβ
	$\overline{(kJ mol^{-1})}$	$(kJ mol^{-1})$	
4CH3NH2	+20.1	-37.2	6.52
2en	-4.2	-60.7	10.6
E. 1			

Explain the above data giving appropriate reasons. 5

30/3 (Sem 6) CHM M4 (4)

4000

- (ii) Briefly discuss the advantages and limitations of nuclear fission and fusion processes as probable alternatives to fossil fuels as energy sources.
- (c) (i) Explain the terms packing fraction and mass defect. How is mass defect related to nuclear binding energy ? Show the variation of packing fraction against mass number.

What do you mean by positive and negative packing fraction ? 5

- (ii) Define kinetically labile and inert complexes. The high spin complex ion $[Cr(H_2O)_6]^{2+}$ is labile, but the low spin complex ion $[Cr(CN)_6]^{4-}$ is inert. Explain giving reasons. 2+3=5
- (d) (i) Describe the methods of separation of isotopes. What is the best method of separation of isotopes of uranium ? 5
 - (ii) Write the Laporte and spin selection rules for electronic transitions in coordination complexes. Explain why an aqueous solution of $COCl_2.6H_2O$ is faint pink but that of $[COCl_4]^{2-}$ is intense blue. 5

30/3 (Sem 6) CHM M4 (5)

[Turn over

(e) (i) Explain how mercury compounds act as poison in biological systems. 4

- (ii) The electronic spectrum of [Cr(H₂O)₆]³⁺ ion shows bands at 14,900 cm⁻¹, 22,700 cm⁻¹ and 34,400 cm⁻¹. Interpret the spectrum using an appropriate energy level diagram. 4
- (iii) Write the structures of the products of the following reactions : 2
 [Pt(NH₃)₄]²⁺ + 2C1 →
 [PtCl₄]²⁻ + 2NH₃ →

the state of a state of the state of the state of the

with sufficient of all and a distribution of

(6)

4000