Total number of printed pages-7 white the state of the st

3 (Sem-3/CBCS) STA HC 3

The set '1202 a tonals is an open

(Held in 2022)

The ZOITZITATZ IS not open.

(Honours)

Paper: STA-HC-3036
(Mathematical Analysis)

Full Marks: 60 Lenor of Rolle's

Time: Three hours

The figures in the margin indicate full marks for the questions.

Answer the following as directed:

 $1 \times 7 = 7$

Bon

Find the infimum and supremum of (a)

This series convenies if

the set
$$\left\{\frac{(-1)^n}{n}; n \in \mathbb{N}\right\}$$
.

(Choose the correct opnon)

- (b) Identify the wrong statement:
- (i) The set R of real numbers is an open set.
 - (ii) The set of Q of rationals is an open set.
 - (iii) The set $\left\{\frac{1}{n}: n \in N\right\}$ is not open.
 - (c) Show that the series $\frac{1}{2} + \frac{2}{3} + \frac{3}{4} + \dots$ is not convergent.
 - (d) Give the interpretation of Rolle's theorem.
 - (e) Suppose Σu_n is a positive term series, such that

$$\lim_{n\to\infty} n\left(\frac{u_n}{u_{n+1}}-1\right)=l.$$

This series converges if

- (i) l > 1
- (ii) l < 1
- (iii) l=1
- (iv) l = 0

(Choose the correct option)

Which of the following is not correct?

(i)
$$\delta = E^{1/2} - E^{-1/2}$$

(iii)
$$\mu = \frac{1}{2} \left[E^{1/2} + E^{-1/2} \right]$$

(iv)
$$\Delta^2 = E^2 + 2E + 1$$

(g) Which of the following is not correct?

3. Answer any three of the following

- (i) Weddle's rule is more accurate than the Simpson's rule.
- (ii) Weddle's rule requires at least seven consecutive values of y.
- (iii) In Weddle's rule y is of the form $y = ax^6 + bx^5 + cx^4 + dx^3 + ex^2 + fx + g$
 - (iv) None of the above
- 2. Answer the following questions: 2×4=8
 - (a) Show that the sequence $\{S_n\}$, where $S_n = 1 + \frac{1}{2} + \frac{1}{3} + ... + \frac{1}{n}$ is not convergent.

- (b) If M and N are neighbourhood of a point x, then show that $M \cap N$ is also a neighbourhood of x.
 - (c) Show that sin x is uniformly continuous on $[0, \infty]$.
 - State the properties of divided (d) differences.
- 3. Answer any three of the following questions: gravelled on the 5×3=15
 - (a) Show that every convergent sequence is bounded and has a unique limit.

HO PERELLERI

- (b) Define positive term series. Show that the positive term geometric series $1+r+r^2+...$ converges for r<1 and diverges to $+\infty$ for $r \ge 2$.
 - (c) State and prove first mean value theorem of differential calculus.

(d) (i) Show that
$$\Delta x^m - \frac{1}{2} \Delta^2 x^m + \frac{1.3}{2.4} \Delta^3 x^m - \frac{1.3.5}{2.4.6} \Delta^4 x^m + \dots m \text{ terms}$$

$$= \left(x + \frac{1}{2}\right)^m - \left(x - \frac{1}{2}\right)^m$$

- (ii) Define Limit superior and Limit inferior.
- (e) Prove that Newton-Gregory formula is a particular case of Newton's divided formula.
- 4. (a) (i) If $\lim_{n\to\infty} a_n = l$, then show that

Ai) Solve the difference equation

$$\lim_{n\to\infty} \left(\frac{a_1 + a_2 + \dots + a_n}{n} \right) = l$$

div (ii) Verify whether Rolle's theorem is applicable to the function

$$f(x)=2+(x-1)^{2/3}$$
 in the interval [0, 2] or not. 2

Or

(b) (i) Show that the sequence $\{S_n\}$,

where
$$S_n = \left(1 + \frac{1}{n}\right)^n$$
 is

convergent and that limit

$$\left(1+\frac{1}{n}\right)^n \text{ lies between 2 and 3.}$$

8

0

3i	mil	(ii)	State Cauchy's nth root test.	2
5. _[]	(a)	(i) 10	State and prove Stirling interpolation formula.	7
		(ii)	Solve the difference equation	
	1150	li we	$y_{k+1} - ay_k = 0, \ a \neq 1$	3
			Or	
8	(b)	(i)	Expand sin x by Maclaurin infinite series.	1's 8
is	MOX	(ii)	State Taylor's theorem wi Cauchy's form of remainder.	th
lis	noin	i orli	or **!!-x	2
6.	(a)	(i)	State and prove Weddle's rule.	7
	1/1/2	(ii)	Show that	
		8	$\mu^2 y_x = y_x + \frac{1}{4} \delta^2 y_x$	3
		jimil	Jadi bal regiovaco	
		(i)		
8	£ bai	л 2 в	$\lim_{n\to\infty} \left[\frac{1}{\sqrt{n}} + \frac{1}{\sqrt{n+1}} + \dots + \frac{1}{\sqrt{2n}} \right] = \infty$	

(ii) Define absolute convergence and conditional convergence.Show that every absolutely convergent series is convergent.

6