3 (Sem-3/CBCS) CHE HC 2

2021

(Held in 2022)

CHEMISTRY

(Honours)

Paper: CHE-HC-3026

(Organic Chemistry-II)

Full Marks: 60

Time: Three hours

The figures in the margin indicate full marks for the questions.

- 1. Answer the following questions: $1 \times 7 = 7$
 - (a) Write the name of a thiol compound that can be used as an antidote for mercury poisoning.
 - (b) Arrange the following compounds in order of reactivity toward $S_N 2$ reaction:
 - 1-Bromobutane,
 - 1-Bromo-2,2-Dimethylpropane
 - 1-Bromo-2-Methylbutane
 - 1-Bromo-3-Methylbutane

- (c) With increasing temperature, elimination is favoured over substitution. Why?
- (d) What is meant by cine-substitution?
- (e) Name a reagent used to convert cyclohexylmethanol to cyclohexanecarboxaldehyde.
- (f) Give two ways in which you can convert the poor leaving group in ROH to a good leaving group.
- (g) What happens when diethylsulfide reacts with hydrogen peroxide and acetic acid?
- 2. Answer the following questions: 2×4=8
 - (a) How can you prepare lactic acid from propanoic acid?
 - (b) Why is Ethylacetoacetate (EAA) called an active methylene compound?
 - (c) Explain why the boiling point of ethylene glycol is much lower than that of glycerol.

- (d) Between thiol and alcohol, which one is more acidic and why?
- 3. Answer **any three** of the following questions: $5\times 3=15$
 - (a) Predict the major product in each of the given reactions: 1×5=5

(iii)
$$(C_6H_5)_3P + C_6H_5CH_2Br \longrightarrow ?$$

(iv) n-C₆H₉MgBr + H₂C
$$\xrightarrow{O}$$
 CH₂ $\xrightarrow{I)$ Et₂O $\xrightarrow{I)}$?

- (b) What product(s) is/are obtained when m-chlorotoluene is treated with sodium amide in liquid NH₃? Propose a mechanism to justify the product(s) formed.

 1+4=5
 - (c) What is Bouveault-Blanc reaction? Explain the mechanism of the reaction by considering a suitable example.

1+4=5

(d) Suppose we have some optically pure (R)-2-butyl acetate that has been 'labeled' with the heavy ¹⁸O isotope at one oxygen atom as shown.

Draw a mechanism for the hydrolysis of this compound under basic conditions. Predict which of the products will contain the ¹⁸O label. Also predict whether the butan-2-ol product will be pure (R), pure (S) or racemized.

3+1+1=5

- (e) (i) Between C_6H_5CHO and CH_3CHO , which one is less reactive towards nucleophiles and why?
 - (ii) Predict the product and propose a mechanism of the following reaction:

4. Answer any three of the following:

10×3=30

(a) Predict the product and propose mechanisms of the following reactions: 3+3+2+2=10

(b) (i) 2,3-Epoxypropane when reacts with methanol under acidic conditions yield 2-Methoxy-propan-1-ol as major product, but under basic conditions yield 1-Methoxy-propan-2-ol. Explain.

5

(ii)	Explain why the acid-catalyzed condensation is a poor method for the synthesis of an unsymmetrical ether such as ethyl methyl ether.
(iii)	Provide a mechanistic explanation for the observation that treatment of either 3-methyl-2-butanol or 2.2-dimethyl propanol with hot

- aqueous HCl gives principally 2-chloro-2-methylbutane.
- Discuss the relative reactivities of (c) (i) different carboxylic acid derivatives toward nucleophilic additionelimination reaction.
 - How would you prepare (ii) phenylacetic acid from benzyl bromide?
 - (iii) Explain why a Claisen condensation product is not obtained from ester such as ethyl 2-methylbutanoate. 3
- (d) (i) Compare S_N1 and S_N2 reactions with regard to
 - (1) stereochemistry;
 - (2) kinetic order;
 - (3) occurrence of rearrangements.

2+2+1=5

2

(ii) Complete the following reaction and write the mechanism:

(any one) 3

(a)
$$+ NH_3 \xrightarrow{170 \, ^{\circ}\text{C}}$$
 ?

 $+ NH_3 \xrightarrow{170 \, ^{\circ}\text{C}}$?

 $+ NANO_2 + H_2SO_4 \xrightarrow{H_2O_10^{\circ}\text{C}}$? $\xrightarrow{H_2SO_4}$

- (iii) N-Methylpropanamide does not undergo Hofmann rearrangement when treated with aqueous sodium hypobromite. Explain. 2
- (e) (i) Write the products obtained and state whether they are related to each other as diastereomers or enantiomers.

- (ii) How can you convert cyclohexanone to nylon? Write the reaction.
- (iii) Predict the products formed:

1×6=6

(i)
$$C_6H_5CHO$$
 i) 60% KOH i) H_3O^*

(iii)
$$CH_3$$
- CH = CH - CHO $AI(O'Pr)3$?

(v)
$$Ph-C-C-Ph \xrightarrow{i)} OH ?$$

(f) (i) What are ylides? How can you prepare methylenecyclohexane using Wittig reaction? Propose a mechanism for the reaction clearly stating the steps involved.

1+1+3=5

(ii) Identify the product in the following reaction:

$$H_3C-CH=CH=CH-C-CH_3+H_3C-C-CH_2-C-OEt$$

In this reaction which substrate is the Michael acceptor and which one is the Michael donor? 2

(iii) Propose a mechanism for acidcatalysed aldol condensation involving the reaction of acetone with HCl. 3