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PREFACE

Computational chemistry is a very diverse field spanning from the development and application of
linear free energy relationships (e.g. QSAR, QSPR), to electronic structure calculations, molecular
dynamics simulations, and to solving coupled differential equations (e.g. drug metabolism). The
focus of Frontiers in Computational Chemistry is to present material on molecular modeling
techniques used in drug discovery and the drug development process. Topics falling under this
umbrella include computer aided molecular design, drug discovery and development, lead
generation, lead optimization, database management, computer and molecular graphics, and the
development of new computational methods or efficient algorithms for the simulation of chemical
phenomena including analyses of biological activity. In this volume, we have collected nine
different perspectives in the application of computational methods towards drug design.

Chapter 1 “The Use of Dedicated Processors to Accelerate the Identification of Novel
Antibacterial Peptides” reviews the use of modern hardware advances to accelerate the
identification of new antibacterial peptides. Identification of new antibiotics is of paramount
importance as bacterial develop resistances to the current compounds used. The authors highlight
the advantages as well as the difficulties in developing algorithms for Field Programmable Gate
Arrays and Graphic Processing Units.

DNA damage by singlet oxygen is a well-known method to mitigate the presence of singlet
oxygen that remains elusive. In Chapter 2 “Computational Chemistry for Photosensitizer Design
and Investigation of DNA Damage” the authors review electronic structure methods to aid
understanding how singlet oxygen damages DNA as well as using what they have learned to aid in
the design of novel photosensitizers. They review the development of several porphyrin
photosensitziers based on molecular orbital calculations.

One challenge in the QSAR field is how to judge the predictive quality of the models. The authors
of Chapter 3 “How to Judge Predictive Quality of Classification and Regression Based QSAR
Models?” present a review of validating QSAR models using both traditional and new validation
metrics.

In Chapter 4 “Density Functional Studies of Bis-alkylating Nitrogen Mustards”, the authors
present a review of the application of DFT and DFRT methods on understanding the action of
nitrogen mustards. Nitrogen mustards are extensively used as a chemotherapeutic agent.
Identification of new nitrogen mustards is important in order to reduce their cytotoxicity and
increase their effectiveness.

The authors of Chapter 5 “From Conventional Prodrugs to Prodrugs Designed By Molecular
Orbital Methods” review a novel approach in the design of novel prodrugs using molecular
mechanics and molecular orbital methods. In this approach, the authors review methods in which
the prodrug is converted into the active drug without the enzyme.

Chapter 6 “Structural and Vibrational Investigation on a Benzoxazin Derivative with Potential
Antibacterial Activity” highlights the use of DFT methods along with experimental data to



i

understand the properties and behavior of benzoxazin derivative. The authors present the use of
scaled quantum mechanical force field methodology and Atomis in Molecules theory to explain
the vibrational and bonding characteristics in benzoxazin.

In Chapter 7 “First Principles Computational Biochemistry with deMon2k” the authors present a
first principles approach to investigating biochemical principles using density functional methods
with the program deMon2k. Having an all-electron method to explore biochemical and
pharmacological processes; is an important tool in the computational chemist’s toolbox.

In Chapter 8 “Recent Advances in Computational Simulations of Lipid Bilayer based molecular
systems” the authors review computational simulations of lipid bilayers. Cell membranes are a
complex mixture of lipids and play a vital role in cellular function such as the control of processes
that cross the cell membranes. A review of several computational methods and complex lipid
mixtures is presented.

In this last chapter, “Data Quality Assurance and Statistical Analysis of High Throughput
Screenings for Drug Discovery”, the authors review high throughput screening (HTS) methods
bringing to light the challenges to identifying novel molecules from vast and diverse databases.
The authors also note the use of data from sophisticated biological assays in HTS.
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CHAPTER 1

The Use of Dedicated Processors to Accelerate the Identification
of Novel Antibacterial Peptides

Gabriel del Rio"’, Miguel Arias-Estrada' and Carlos Polanco
Gonzalez™”

!Computer Science Department, Instituto Nacional de Astrofisica, Optica y
Electrénica, Puebla, Puebla, México; *Departamento de Matemadticas, Facultad de
Ciencias, Universidad Nacional Autonoma de Meéxico. Cd. Universitaria, 04510
México, D.F. México and *Subdireccion de Epidemiologia Hospitalaria y Control de
Calidad de la Atencion Médica, Instituto Nacional de Ciencias Médicas y Nutricion
Salvador Zubiran, Vasco de Quiroga 15, Col. Seccion XVI 14000 D.F. México

Abstract: In the past decades, the procedure to identify novel antibiotic compounds has
been motivated by the heuristic discovery of the antibiotic penicillin by Fleming in 1929.
Since then, researches have been isolating compounds from very wide range of living
forms with the hope of repeating Fleming’s story. Yet, the rate of discovery of new
pharmaceutical compounds has reached a plateau in the last decade and this has promoted
the use of alternative approaches to identify antibiotic compounds. One of these approaches
uses the accumulated information on pharmaceutical compounds to predict new ones using
high-performance computers. Such approach brings up the possibility to screen for millions
of compounds in computer simulations. The better predictors though use sophisticated
algorithms that take up significant amount of computer time, reducing the number of
compounds to analyze and the likelihood to identify potential antibiotic compounds. At the
same time, the appearance of computer processors that may be tailored to perform specific
tasks by the end of the past century provided a tool to accelerate high-performance
computations. The current review focuses on the use of these dedicated processor devices,
particularly Field Programmable Gate Arrays and Graphic Processing Units, to identify
new antibacterial peptides. For that end, we review some of the common computational
methods used to identify antibacterial peptides and highlight the difficulties and advantages
these algorithms present to be coded into FPGA/GPU computational devices. We discuss
the potential of reaching supercomputing performance on FPGA/GPU, and the approaches
for parallelism on these platforms.

Keywords: Antibacterial peptides, FPGA, GPU, high-performance computations,
parallelism, QSAR, supercomputing.

*Corresponding author Gabriel Del Rio: Department of Biochemistry and Structural Biology, Instituto de
Fisiologia Celular, Universidad Nacional Autéonoma de México, México DF, México; E-mail:
gdelrio@ifc.unam.mx
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INTRODUCTION

The discovery of salvarsan (arsfenamine) in 1901 by Paul Erlich facilitated the
treatment of syphilis; Erlich proposed the idea of “magic bullets” to explain the way
this synthetic compound was able to kill the bacteria associated to the disease: a magic
bullet (salvarsan) traversing along the body in search of its target (bacteria) without
damaging any other tissue [1]. This discovery promoted the idea of synthesizing
target-specific compounds as a way to find novel antibiotics. In 1929 penicillin was
accidentally discovered by Flemming [2] and provided an example of an effective
antibiotic whose target was unknown at the time of discovery; this in turn promoted
the development of phenotype screening methods aimed to identify antibiotics by their
function and not by specific target. These two strategies are still in use; for instance, in
the period from 1999 to 2008, 28 out of 45 first-in-class new molecules tested by the
FDA were discovered by phenotype screening methods [3]. Each of these strategies
has advantages and disadvantages that have been recently reviewed [4, 5] and are out
of the scope of this review. For any of these strategies, knowledge about the molecular
mechanism of action of antibiotics is a desirable feature for any drug to be used and
that implies knowing the target of action; however, many antibiotics approved by the
FDA are poly-pharmacologic (i.e., act on multiple targets) [6] and such feature
troublesome the synthesis of new pharmacologic compounds based on specific targets
[7] because that implies the synthesis of large molecules that tend to be non-permeable
to cells and not easy to synthesize.

The recent recognition that polypharmacological compounds are among the most
effective antibiotics may explain the relatively small number of new pharmaceutical
compounds approved by the FDA despite the increasing amount of resources
invested [8]. This has led to a shift in the last decade in the research and
development strategy of the pharmaceutical industry: focus on strategic therapeutic
areas and outsourcing with Universities. Among the areas gaining interest in
pharmaceutical industries are new treatments for bacterial infections. This trend
constitutes an impulse to explore new strategies to identify new antibacterial
compounds, especially those obtained from biological means, also referred to as
biologics. We review the results of a new promising strategy aimed to identify new
antibacterial compounds combining the knowledge gained from the traditional
target-based or phenotype-based strategies with computer sciences and technology.
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ANTIBACTERIAL PEPTIDES

Antibacterial peptides (APs) are produced by many different organisms and have
the ability to arrest cell growth (bacteriostatic) or to kill bacteria (bactericidal) [9].
Similar to other antibacterial compounds [10], APs act upon different targets in
bacterial cells [11]: the cell wall, DNA replication machinery and the ribosome;
furthermore, these peptides not only act on the bacterial cell, but also are able to
elicit an immune response from the host as part of the innate immune response
[12]. Furthermore, some APs also have antiviral, antiparasitic and antifungal
activity that had led to use some APs (e.g., gramicidin S and polymyxin B) to
treat infections [13]; yet some features of natural APs must first be improved
before they can be used as therapeutics, including: the high cost of large-scale
production, stability to proteases, unspecific toxicity against eukaryotic cells, and
potential development of immunological reactions [14]. Among these, the cost of
production and toxicity against eukaryotic cells seem feasible to be improved
simultaneously by producing linear peptides in biological systems [15] and alter
the physical properties of AP to achieve selectivity towards bacteria [16]. In the
current review, we analyze the strategies that have been used to identify selective
antibacterial peptides mainly focus on computational approaches.

The most abundant APs are cationic antibacterial peptides or CAPs, which are
relatively short (12-100 residues) and amphiphilic; despite their similar physical
properties, CAPs share very little sequence similarity and fold into four main
classes: amphiphilic peptides with two to four B-strands, amphipathic a-helices,
loop structures, and extended structures [12]. The amphipathic a-helical peptides
are linear and are suitable for large-scale production since these do not require any
disulfide bond to adopt a functional structure [17].

The mechanism of action for any CAP is accepted to require the interaction of the
peptide with the bacterial membrane, but the basis of their action differs according
to their final target of action [18, 19] (see Fig. 1): CAPs would approach be
stabilized around membrane due to their rich composition of Arginine residues,
which have the ability to interact with both lipid and water; once in contact with
the membrane, CAPs may disrupt it or pass through it to find its target [20].
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Figure 1: Mechanisms of action of CAPs. CAPs may interact with membrane and either destabilize
the lipid membrane (A) or insert into the membrane in a non-disruptive manner (B). A CAP is
represented in the image as a yellow cylinder and the lipid membrane as red circles with blue tails.

In any case, a desirable feature of CAPs is the ability to discriminate bacterial
from mammalian cells; such peptides are referred here to as Selective CAPs, or
SCAPs. Different computational approaches have been reported that aimed to
identify novel antibacterial peptides [21-25].
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Figure 2: Size-Activiy relationship of APs. The reported activity against Escherichia coli by
every antibacterial peptide reported in the YADAMP with 30 or less amino acids in length, with
Minimum Inhibitory Concentration below or equal to 10 uM, is plotted against the length of the
corresponding peptide. Data obtained from the October 5", 2012 version of the YADAMP [26].
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Considering the extremely large number of possible peptide sequences, it is
expected that systematic computational screenings may be performed on small
peptides (less than 30 amino acid residues). Noticeable, the most active
antibacterial peptides can be found in peptides of very different lengths (see Fig.
2; the figure shows only peptides with MIC against Eschericia coli <= 10 pM).
Interestingly, the majority of these peptides have been isolated from the animal
kingdom, which should display preferential antibiotic activity against bacteria and
few if any toxicity against animal cells, that is, these may be part of the SCAPs.

In terms of multiple activities reported for CAPs, it has been noted that these share
similarities with Cell Penetrating Peptides (CPPs) [27]: both families of peptides are
cationic, amphipathic and their action depends on the interaction with lipid
membranes. An important difference is the target membrane and the mechanism of
interaction of the peptide with the membrane: some CAPs disrupt bacterial
membrane’s integrity while CPPs pass through mammalian membranes without
affecting its functionality. Yet, it has been reported that CPPs may have antibacterial
activity [28, 29] and some CAPs may pass through mammalian membranes like
CPPs [30]. While it is not clear what is the biological significance of this functional
redundancy, it has been proposed that the difference in the activity displayed by
these two families of peptides depends on the ability to adopt a stable three-
dimensional structure in solution and/or lipid membranes [20].

Furthermore, natural CAPs not only have the ability to kill bacteria but also to elicit
immune response in animals [12]. So, by matching properties from peptide sequence
or structure to its activity it is possible to find some computable features that may be
related to the diverse activities observed in CAPs: lipid membrane disrupting activity
and/or lipid membrane penetrating activity and/or recognition of intracellular bacterial
targets and/or eliciting immune response. In this sense, it is possible to recognize two
different types of patterns from peptide sequences: those that are conserved at the
sequence level and others that are conserved at the three-dimensional structure. For
instance, binding sites may be conserved at the sequence level, while peptide
partitioning into lipid membranes would be a conserved physicochemical coded in the
three-dimensional structure of peptides. Thus the use of computational techniques may
not only assist in the identification of novel SCAPs but also in understanding the
structure-function relationship of this family of peptides.
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Here we review some of the computational methods used for the prediction of
CAPs and their advantages and disadvantages to be coded into dedicated
processors.

ALGORITHMS USED TO PREDICT ANTIBACTERIAL PEPTIDES

Two different paradigms are used in the identification of new CAPs: target-based
and activity-based approaches. The first one requires knowledge about the target
molecule while the second one is oriented towards finding patterns associated to
the activity of the known CAPs. Alternatively, from a mathematical and
computational perspective, methods that relate chemical structure with biological
activity can be classified in two main groups: supervised learning and non-
supervised learning [31].

Supervised Learning

This method deduces a stochastic function from a representative sample of
characteristic elements from the biological pattern searched. The goal of the
supervised learning is to create, from a set of examples or training data, a function
capable to predict the value corresponding to any element in study, then from this
data it has to generalize unseen information. Some representative algorithms in
this group are: Quantitative Structure Activity Relationships, Hidden Markov
model, Montecarlo method, Support Vector Machines and Fourier Transforms.
Particularly, the HPC programming for these methods is the most recommended
because in most of the occasions the diagram of tasks to be performed are
independent or semi-independent, which allows you to dramatically reduce
processing times, to the extent that will cooperatively processors. Within the
supervised methods, the methods most used in the determination of biological
profiles are the Quantitative Structure Activity Relationships and Hidden Markov
models, which are then described in detail, due to their importance.

Quantitative Structure Activity Relationships (QSAR)

This model [32] quantifies the physicochemical properties in the element studied,
characterizing its biological process. A mathematical function built this way can
be used to predict the response of other chemical structures. This method gives
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each chemical group parameters, such that, when modifying its chemical structure
the contribution of each functional group to the pharmaceutical drug or toxic
substance activity can be evaluated, determining the activity variation of a
particular substance.

QSAR modeling generates predictive models correlating biological activity with
physicochemical properties through statistical tools [33, 34] in QSPR models of
chemicals with distinctive properties or molecular structure descriptors. QSAR
are widely used in many disciplines apart from drug discovery and lead
optimization [35], they are also used in toxicity prediction and regulatory
decisions [36].

The success of any QSAR model depends on the accuracy of the initial data, the
selection of adequate descriptors, statistical tools and most important the
validation of the developed model.

Validation is the process to determine the reliability and importance of a
procedure for a specific purpose [37]. To validate QSAR models we have to
thoroughly consider the following aspects: the selection methods of the training
set components [38]; the criteria to set the size of the training set [37] and the
impact variable selection will have on the training set model to determine the
prediction quality.

There are four main strategies to validate QSAR models [39]: (1) Internal
validation. (2) Validation by data division in training and testing samples. (3)
External validation applying the model to outside data. (4) Data randomization.

The order of complexity in a QSAR model is cO(n), it depends on ¢ the number of
variables involved. Its computational implementation frequently uses the master-
slave parallelization method that reduces 90% of time compared to processing
time in a MoOnoO-processor.

QSAR methods have been used to detect antibacterial peptides for quantifying
contact energy between neighboring amino acids [40], quantifying based on the
physicochemical properties of amino acids [41, 42], quantifying hydrophobic
property parameters [43]. Applications range from QSAR models of low-
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molecular weight drugs [44-51], to QSAR/QSPR models for protein and nucleic
acid sequences [52, 53], protein 3D structure [44, 54], RNA secondary structures
[55, 56] and of course peptides [57]. The idea has been extended to include also
Quantitative Proteome-Property Relationship (QPPR) models that personalize
predictions of drug cardiotoxicity [58, 59], or human prostate cancer [60] based
on protein composition of blood proteomes.

Hidden Markov Model [61]

It is a statistical model where the system being modeled is presumed to be a
Markov process with hidden (unobserved) states. An HMM can be considered as
the simplest dynamic Bayesian network.

The order of complexity in a MM is O(n), as it acts as a dimensional contractor,
therefore, it does not depend on the variables implicated but on the immediately
previous state of the components evaluation. However, its computational
implementation varies in efficiency. Although MC or HMM use the
parallelization master-slave method to reduce 90% processing time respect to a
mono-processor, HHMM computational efficiency is only between 30% and 60%.

HMM has been wused for antibacterial peptide detection reproducing
physicochemical properties [61], protein identification [62], data base searcher
construction BLAST [63], genes sequence detection [64] or prebiotic scenario
recreation [65]. The MARCH-INSIDE approach (Markov Chains Invariants for
Network Simulation and Design) introduced by Gonzalez-Diaz and collaborators,
use the Markov Chain theory to infer QSAR/ QSPR models at different structural
levels. These Markov methods use different types of transition probabilities
described by atom-atom, nucleotide-nucleotide, amino acid-amino acid, or even
protein-protein matrices. Two recent in-depth reviews of the field were recently
published [58, 59].

Unsupervised Learning

In this method the biological model profile is built without previous knowledge of the
pattern searched, thus the non-supervised learning takes the data inspected and sets it
in a cluster. The group of representative algorithms from this method is called
Clustering. This is a highly complex method to implement computationally, although
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the description of the method is simple, its computational abstraction, demand a high
level of experience in programming, that implements an HPC platform. This is mainly
due to the need to update the information of all the nodes and the non-independence of
tasks has carried out, a typical algorithm of this method is Clustering, which is
described below.

Clustering

It is a principal task [66] of explorative data mining, and a general technique for
statistical data analysis used in many fields, including machine learning, pattern
recognition, and bioinformatics [67, 68].

Cluster analysis is a general task to be solved. Various algorithms that differ
significantly in their concept of what forms a cluster and how to find them
efficiently have been described and we will review some of them. A common
concept of cluster includes groups with short distances among members, compact
areas of data space and intervals or particular statistical distribution. Therefore
clustering can be expressed as a multi-purpose optimization problem.

Proper clustering algorithm and parameter setting depend on the intended
application of the results. Cluster analysis is not an automatic task, but a repetitive
process of knowledge discovery and interactive multi-purpose optimization
involving trial and error. It will often be necessary to change pre-processing and
parameters until the result achieves the desired properties.

Clusters found by different algorithms vary significantly in their properties, to
understand these cluster models we have to understand the differences between
different algorithms: (1) Connectivity model: it builds models based on
connectivity distance. (2) Centroid model: the k-means algorithm represents each
cluster by a single mean vector. (3) Distribution model: clusters are modeled
based on statistic distribution, such as the multivariate normal distribution used by
the Expectation-maximization algorithm. (4) Density model: it defines clusters as
connected compact regions in the data space.

DEDICATED PROCESSORS USED TO PREDICT ANTIBACTERIAL
PEPTIDES

Predicting novel antibacterial peptides using computational techniques has many
advantages but also challenges. The nature of the algorithm used and the
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complexity associated with data processing can lead to long processing times
often non-convenient for large peptide screenings to be performed in a reasonable
amount of time; therefore options to accelerate in several orders of magnitude the
computational load are desirable. From a computational architecture perspective,
there are only three approaches to accelerate an algorithm: a) use a faster
processor, b) optimize the algorithm reducing its complexity or finding novel
ways to solve it and, c) increase the number of instructions processed per clock
cycle. Option a) has already arrived to a limit where newer computers are not
increasing their clock speed due to economical limitations (i.e. faster processors
will run in frequencies close to microwave signals and would require complex
design and expensive integrated circuit packages and printed circuit boards). The
second option, is the choice of most of the computer science groups, trying to find
out new ways to transform a data/problem domain into a less complex domain
where the total amount of computer instructions is reduced, either by algorithm
complexity reduction or implementation optimization, but in most cases at the
expense of some kind of tradeoff, i.e. speed vs. accuracy. The third option is the
parallel computing choice, that is, increasing the number of computational
resources that solve simultaneously different parts of the problem or to process
different parts of the whole data set simultaneously. Even with huge
supercomputers available to the bioinformatics community, there are additional
limitations and challenges to parallelize effectively any kind of problem in a
straightforward way. We will discuss some of those challenges, co-processing
platforms for acceleration, and some approaches for peptide computation
acceleration in the following subsections.

Computational Complexity and Accelerating Algorithm Execution

As presented in section III, there are several approaches for peptide computational
research. Not all algorithms can be straightforward parallelized, although there are
general patterns and strategies to do it. In general, parallelization is guided based
on how intensive is an algorithm in computations, the amount of data to be
processed, and the dependencies in intermediate results (i.e. iterative algorithms
depend on the result of the previous iteration).

In general, bioinformatics algorithms are common building blocks from
algorithms already explored by computer science that have been adapted to the
particularities of bioinformatics. Many techniques to parallelize the algorithms are
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already in the literature and some have been adapted to bioinformatics [69].
Furthermore, the platform to execute a parallel algorithm also guides the approach
to follow, programming language, fine or coarse partition, etc.

Some algorithms for peptide search have already been formulated in the context
of a parallel implementation, for example around Markov models [70]. Since
Markov models are sequential computations, the parallelization is challenging,
and proposing a whole framework since the beginning is a good strategy. Other
algorithms based on relaxation/iterative [71] are complicated to parallelize, so
high level data partition is a possible choice. Machine Learning algorithms, like
those based on neural networks [72] or evolutionary algorithms [73] have the
potential for parallel implementation. Some algorithmic techniques for data post-
processing, filtering, and pre or post data selection [74-76], can also be
parallelized but the nature of each approach needs to be evaluated individually to
find the best compromise for acceleration.

There have been efforts to identify common building blocks for bioinformatics in
the past [69, 77], where several lessons can be applied to novel algorithms. Many
of them deal with the sequencing and string matching problem [78, 79] and
several techniques in parallelization in existing algorithms can be adapted to new
platforms [80].

Parallel Computing Platforms

The main parallel computation platforms available are: supercomputers, FPGA
dedicated co-processors, and the use of GPU-Graphic Processing Units, as co-
processors. A brief overview is given in the following subsections with some user
perspective pros and cons for peptide and in general, for bioinformatics
exploration.

Supercomputing

Supercomputing is the choice for large-scale computational efforts like the human
genome project. There are current large investments in academia and
pharmaceutical industry for High Performance Computing (HPC) systems, based
on traditional arrays of CPU nodes, or nodes with co-processing units (FPGA or
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GPU, the later more popular since 3-5 years ago due to the price/performance and
power consumption issues). Multi-node systems has been the mainstream in HPC
since decades, with more computational power attained with new CPU nodes
available in each generation, but the limitation is how to program and effectively
split data/computation in the most efficient way across a multi-node system
composed of thousands of nodes. In a first approach, the use of supercomputers,
and in general any cluster of processors could seem straightforward since the
software already running in a single node could be executed in multiple nodes. A
first complication arises in the implementation/design on how to partition data
among nodes and manage the data partition and results gathering. Things
complicate further if the algorithm requires access the full data set or a subset that
is spread among several nodes, creating bottlenecks in data transfer that can limit
the actual global performance. Furthermore, some algorithms require iterate based
on results generated during processing, and sharing and communicating those
results to other nodes can complicate data management issues. Several languages
and software platforms are available to facilitate this, but the user must understand
the tradeoffs to be able to write efficient programs to do the job. Some
bioinformatics programs like BLAST [81], that performs multiple sequence
comparisons, are already ported to multiple nodes/supercomputing efforts where
teams of several programmers can architect a parallel software, but exploring new
algorithms on a supercomputer context could be complex for most users. Another
effort is the proprietary platform from CMD Bioscience [82] for peptide discovery
that executes on HPC resources, for commercial research.

Field Programmable Gate Arrays - FPGA

Field Programmable Gate Arrays are special integrated circuits where digital
architectures can be configured to cope with user needs by defining specific
computing architectures. FPGAs are a mature technology used mainly for low to
medium size production of custom digital electronics for a wide range of
applications. Two of the largest FPGA manufacturers are Xilinx and Altera. Fig. 3
shows the internal architecture of an FPGA. The CLB - Configurable Logic
Blocks, are the actual building units for logic design. The FPGA contains
hundreds to thousands CLBs inside. The CLBs are basic combinational and
sequential modules that are user configurable. CLBs are connected among them
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using special connectivity lines that are also programmable. The logic and
connectivity reconfiguration gives the FPGA the flexibility to implement all kind
of digital architectures so a dedicated processor can be built using these blocks.
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Figure 3: General structure of an FPGA. The Field Programmable Gate Array is a matrix of
Configurable Logic Blocks (CLB) that can implement basic logic/arithmetic functions,
interconnected by configurable buses for local and long distance interconnection. Each CLB could
implement 4 to 8 bit logic. Usually the CLB integrates 2 to 4 LUTs (Look up Table),
Add/Subtract/Multiply logic and D Flip-flops. The Input/output (IOB) modules are also
configurable to be any direction, so full flexibility of the device is possible to implement dedicated
digital architectures.

The digital architecture in an FPGA can be defined using a Hardware Description
Language (HDL) and then synthesized into the FPGA building blocks. The task of
“programming” an FPGA is actually closer to the design process of an Integrated
Circuit than to programming, although the use of a HDL to describe the
architecture borrows some techniques and methodologies from Software
Engineering to speed up development and reuse components.

Modern FPGA devices can have enough resources to build custom parallel
computing architectures, and can easily reach around 10 million equivalent digital
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gates, enough to accelerate 10x to 100x compared to simple processor
implementation, or 100x to 1000x acceleration if custom processors are designed
for a particular algorithm. FPGAs is the platform of choice for Reconfigurable
Computing, an area of computer science focused on proposing custom
architectures for a particular algorithm, in contrast to traditional computer
implementation where the algorithm is limited to the fixed architecture of a CPU.
A custom architecture can accelerate performance since the inherent limitation of
a general purpose CPU is eliminated with a reduced instruction unit that is
optimized for the particular algorithm to be executed, reducing the hardware
resources required, but limiting the flexibility once the architecture is
implemented in the FPGA. The reconfigurability of the FPGA allows relatively
fast “programming”, for debugging and fast prototyping, providing an interesting
balance between flexibility, programmability and hardware acceleration. A
limitation is the number of custom processors that can fit in an FPGA, so
acceleration can be gained with parallelism but limited to the actual number of
units that can be implemented in an FPGA device or set of FPGA devices in a
platform, as well as other architectural issues when moving large amount of data
among processors and devices [83].

In order to propose a particular architecture to accelerate an algorithm, the user
has to master architecture design and algorithm design/understanding, so a
solution can require large amounts of efforts (months to years) to achieve a fully
functional and optimal solution. Some efforts in component reuse, parametric core
generation and special HDL that can be used for fast prototyping have focused on
encapsulating the complexity to allow faster development time, but they have not
become widespread. For example, the platform created by the company
Mitrionics allows for bioinformatics development around FPGAs but the
knowledge is kept inside the company or can be used on particular applications
were they train people to use the platform.

Other languages, like Handel-C, were created to accelerate development by
keeping a standard C syntax and exposing explicitly parallelism to the
programmer, hiding the design of state machines in the hardware. A recent
alternative is the use of OpenCL to synthesize FPGA based architectures that can
be parallelized automatically due to the OpenCL nature. Other high level
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languages and synthesis approaches, where the complexity is encapsulated into
semi-automated synthesis tools to generate building blocks for bioinformatics and
FPGA are reviewed in [84].

The potential of FPGAs for bioinformatics algorithm acceleration have been
explored with several algorithms. For example the basic Smith-Waterman
algorithm, that is the basis of many bioinformatics algorithms, had shown more
than 160x acceleration [85] showing the potential of the technology.

Peptide research has been benefited with FPGA acceleration, in particular in
peptide sequencing [86] and peptide spectrometry identification [82, 87] that deals
with large number of comparisons. Some researches have concentrated on the
parallelization issues, while others on the optimum architecture implementation
on an FPGA [86], that gives an idea of the complexity of the design with FPGAs
since the developer needs to master parallel algorithms and architectural design.

Other FPGA based supercomputing platforms, not limited to bioinformatics, are
presented in [88]. Bioinformatics algorithm acceleration can be pursued with
FPGA platforms, but as in the case of Mitrionics approach, it requires investing in
time and effort to build an efficient workflow for a particular accelerated
application. For instance, TimeLogic Inc. has developed a suite of bioinformatics
applications, Decypher, embedded in FPGAs cards to offer mature algorithms
already accelerated in proprietary modules.

Graphic Processing Units - GPU

Another alternative for implementing parallel algorithms are the Graphic Processing
Units. Traditionally the demands on high performance graphics in personal
computers have driven the development of the GPUs, in a parallel path to the
development of the microprocessors. GPUs have evolved of a graphics coprocessor
to a full computational workhorse with dedicated high speed bus to the CPU with
highly parallel (from 128 to 1000s) processors to deal with the graphic computations
of 3D visualization applications, in particular games. Graphic programming also have
evolved with specialized languages like Open GL, that in the mid-2000s were used to
program custom parallel programs but with limitations (like double precision
arithmetic) since the mathematical units in the GPU were simplified only for
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graphics. Other efforts migrated to facilitate programming on the GPUs with
languages like OpenCL (a superset of Open GL but generic of all kind of parallel
computations) and CUDA-C (a language for multithread programming suited initially
for Nvidia GPUs). In particular, the 2007-2009 GPUs began to support CUDA-C and
OpenCL as generic programming languages so the GPU can be used effectively as a
parallel computation engine attached to the CPU. Furthermore, the last generation of
GPUs from Nvidia [89] with Tesla and Kepler architectures are designed specifically
as parallel engines, so a “supercomputer’” can be configured in a desktop computer
with 2 to 4 GPU boards reaching 1-2 TeraFlops of processing power (see Fig. 4).

CPU/GPU Application
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Figure 4: GPU structure abstraction. The Graphic Processing Unit can be seen as a parallel
computer with a multiple thread programming model. The threads are executed in block units. The
GPU executes the block instances in multiprocessor units with local RAM and access to a Global
Memory to communicate data with the CPU. The programming model allows for generic
parallelization of hundred of thousands of threads (organized as multiple blocks of threads), and
the GPU executing engine automates the real parallel execution in the multiprocessor array
available.

The current generation of GPU boards integrate 500-2000 core units, so a well
parallelized algorithm can be accelerated hundreds of times, delivering orders of
magnitude acceleration compared to a standard multi-core processors. On the
other hand, the programming model differs from a multi-core processor or a
multiple node cluster or supercomputer. Since the GPU is more like a multi-
threaded architecture where multiple (thousands) of threads are executing in
parallel in the internal GPU cores. The programming model requires a different
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way of formulating the algorithm to take advantage of the whole potential: on one
hand, the threads have to be light, i.e. not very long, but they have the flexibility
of being able to use floating point and single or double precision arithmetic; and
on the other hand, the programmer has to reformulate carefully the data partition
of the data set to take in consideration the limitations in the local memory of the
processing cores, and reduce the number of read/write cycles to the main memory
as well as data transfers to the host processor, since those are the bottlenecks to
achieve peak performance.

Depending on the nature of the algorithm to be accelerated there is a variety of
techniques to deal with the optimum problem partition, parallelization and data
gathering. A review of those techniques can be found in [69, 90], and applied to
GPU programming in [91, 92]. Common bioinformatics algorithms have been
already ported to GPU, for example [80] presents the BLAST algorithm
accelerated on a GPU.

Accelerating Peptide Computation

Previous work related with Peptide Computation acceleration was carried out
initially in the spectrometry area to identify peptides, where data obtained from
spectrometer needs to be compared to a an existing database and where the
comparison time increases quadratically with the amount of data. Some
implementations on FPGA architecture for the comparison and the labeling of
peptides have been described [87, 93], and [94] follows a similar approach but
with a HPC.

On the other hand, large scale efforts to build a platform for peptide research and
discovery is proposed by the company Mitrionics for commercial purposes, so the
low level details are not given but their approach is based on high level synthesis
of building blocks for bioinformatics.

Following the GPU approach, [95, 96] formulates under a parallel SIMD structure
their algorithms so they can be implemented in GPU.

Most of the research on peptide discovery does not deal with the acceleration
requirements and they focus on GPU or cluster/supercomputing implementation
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to reach the performance required. Another approach considered since the
beginning the acceleration requirements is discussed in next subsection.

Our Approach

In our research, we proposed a design to accelerate the prediction of
physicochemical properties based on extended algorithms from del Rio [16], that
has been reported in [97]. As a first approximation, the architecture to accelerate
the algorithms was developed using Handel-C, and validated on a Xilinx FPGA
device. The architecture was replicated four times in a medium size FPGA and
performance was evaluated. Current FPGAs allow more instantiations of the same
architecture in a single device and there are platforms to build processing systems
with several FPGAs as co-processing units of a HPC. Therefore an extrapolation
of the performance that can be achieved is possible.

In 2011-2012 we did additional explorations implementing the same set of peptide
algorithms in a modest size GPU with good results, reported in [98]. We have
observed that the computing time required for different lengths of peptide and
different GPU models provides an average of 64 Million peptides evaluated in
around an hour (3400 to 4300 seconds depending on GPU model) (our
unpublished data). Global memory is not relevant for our implementation due to
the independent nature of the algorithms that execute in their own private portion
of the sequence, and is used only for data transfer between the CPU and GPU.
These results can be extrapolated to the new Kepler architectures and multiple
GPU on a single node, reducing in an order of magnitude the time. An extended
implementation in a HPC cluster with GPUs, could reach another two order of
magnitude time reduction or process more data in the same time. In other words,
the timing reported could be extrapolated to an additional time reduction of
1000x, or the possibility of processing 1000x more data in the same time with
current technology using an HPC cluster.

Concerning FPGA and GPU performance, we have observed that GPU reaches
faster processing time and is better suited to deal with large amount of data (our
unpublished data). The FPGA implementation, although effective, it would be
complicated to scale to the same amount of parallelism of the GPU since all the
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data communication and coordination has to be scaled up too, therefore GPU
would be the technology of choice to continue exploring CAP in our group.

Discussion

GPU based computing and the new trend for GPU co-processing in HPC, is an
opportunity for fast software implementation, exploration and scalability. The
trend will continue at least for the following 10 years, while FPGA based
computing could be relegated to other applications where robust algorithms will
be embedded in specific processing boxes for low cost/high performance
computing in small laboratories, or for portable applications. From our
experience, GPU offers the best tradeoff to explore parallel algorithms for peptide
search, in terms of flexibility, ease of programming, performance and cost. Even
if additional expertise is required to develop an efficient parallel algorithm in
GPU, the skills required to develop such expertise are shorter compared to FPGA
programming. Also, platforms like the Amazon AWS (aws.amazon.com) where
nodes with GPU co-processing boards can be rented on demand, allow
accessibility for HPC resources on constrain budgets and the advantage of testing
in few nodes before scaling to thousands of nodes to accelerate processing. An
example of Amazon AWS for bioinformatics is reported in [99].

Extrapolating our experience with CAP search with length 11 peptides, using a
400 computers cluster with state of the art GPUs (2012 - Kepler boards), could
compute all sequences in less than 2 hours, so exploring more complex algorithms
to refine the selection or compute longer sequences would be feasible in hours to
days computing time.

PROSPECTIVE ANALYSIS

All different methods mentioned to detect and/or predict antibacterial peptides
vary in their mathematical-computational degree of complexity. The methods
developed in the last six decades are the first efforts to consolidate Bioinformatics
and Biomedicine, and it seems this tendency will continue during the next
decades. It is possible to envision that these disciplines will be combined with
robotics to generate intelligent “nanorobots” that will “learn” from exhaustive
transversal analysis about networks and databases.
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From this first effort we have learnt that consolidation will unfold -as in many
other disciplines of basic science-, with acknowledgment and regular study of the
phenomena. Peptide detection and prediction to develop new pharmaceutical
drugs will also follow the same path.

We know computational limitations are not an obstacle for any discipline, the real
obstacle lies in the efficiency of the methods used, directly linked to the regularity
of the event, its fractality and catastrophic bifurcation points [100, 101].

Fractality is a pattern in the dynamics of the phenomenon studied to determine the
points in time where regularity changes and gives way to a new pattern. It is not
obvious at first sight but it underlies in every structure and it is used from
subatomic particle tracking to Universe accelerating expansion.

How can we understand the construction of 10° meter sized “intelligent”
nanorobots or robotic units that do not recognize regular rhythms in
microorganism behavior and their interaction in a watery-lipid medium?

Certainly mathematical-computational methods to detect and predict antibacterial
peptides will have to be featured by:

i.  Having a greater mathematical orientation to recognize structures with
O(nn) degree of complexity and being able to identify in massive
database, irregularities in peptide sequences of diverse length.

ii. Being a 100% parallelized to run in GPU and FPGA clusters and
grids, where processing average speed for peptide sequences of
variable length (< 25aa) is given in tebibytes per second (tebibytes =
2% bytes), and be perfectly capable to differentiate information to
avoid unnecessary storage but to learn from it.

iii. Including membrane and watery lipid interaction from peptide lineal
sequence reading.

Next generation of prediction methods will include broader interdisciplinary
teams, the support of linguists and semiologists will be as necessary as the support
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of Dynamic system specialists is now for the way databases are designed to keep
information related to microorganisms and there will be also a substantial
improvement in the variety of formats to store and access data.

Furthermore, recognizing the poly-pharmacological nature of APs, it is relevant to
generate specialized databases of these peptides to study the structure-function
relationship of APs. For instance, a database for SCAPs may be useful to understand
the nature of the determinants of peptides capable to preferentially target bacteria
instead of mammalian membranes. Alternatively, using every known AP may reveal
the common features associated to every AP, that is, the association of these peptides
with lipid membranes. This knowledge has to impact on the nature and aim of
current databases that specialize on antibacterial peptides.
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CHAPTER 2

Computational Chemistry for Photosensitizer Design and
Investigation of DNA Damage

Kazutaka Hirakawa’

Department of Applied Chemistry and Biochemical Engineering, Graduate School
of Engineering, Shizuoka University, Japan

Abstract: Computational chemistry can be used for the prediction of photochemical
reactivity and the design of photosensitizers for cancer phototherapy. For example, the
activity of a photosensitizer for DNA damage can be estimated from the calculation of the
HOMO energy of the molecules. In general, DNA damage is mediated by the following
two processes: 1) photo-induced electron transfer from the DNA base to the photoexcited
photosensitizer and 2) base modification by singlet oxygen generation through photo-
energy transfer from the photosensitizer to oxygen. The DNA-damaging activity of the
photosensitizer through electron transfer is closely related to the HOMO energy level of the
molecule. It has been demonstrated that the extent of DNA damage photosensitized by
xanthone analogues is proportional to the energy gap between the HOMO level of the
photosensitizer and that of guanine. In addition, computational chemistry can be used to
investigate the mechanism of the chemopreventive effect on phototoxicity. Furthermore,
the molecular orbital calculation is useful to design a photosensitizer in which the activity
of singlet oxygen generation is controlled by DNA recognition. Singlet oxygen is an
important reactive oxygen species to attack cancer. The control of singlet oxygen
generation by DNA is necessary to achieve the tailor-made cancer photo-therapy. Several
porphyrin photosensitizers have been designed on the basis of the molecular orbital
calculation to control the activity of singlet oxygen generation.

Keywords: 4b initio molecular orbital calculation, density functional treatment
(DFT), DNA damage, electron transfer, highest occupied molecular orbital
(HOMO), lowest unoccupied molecular orbital (LUMO), molecular mechanics
calculation, photosensitizer, porphyrin, redox potential, singlet oxygen ('O»),
Zerner’s intermediate neglect of differential overlap (ZINDO) procedure.

INTRODUCTION

Computational chemistry is an important tool to design medical drugs. This
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method can be applied for the prediction of photochemical reactivity and the
design of photosensitizers for cancer phototherapy. To examine the photo-
carcinogenicity of drugs, complicated experiments using cells, various chemicals,
and expensive apparatuses are required. Furthermore, many samples are inversely
consumed by these experiments. Since computational study does not require such
samples or apparatuses, this method can reduce the cost and magnitude of the
task. In addition, computational study can support experimental study. In the case
of drug design, the prediction of a drug’s characteristics through computational
study is important chart. Although not all computational studies are simple,
several studies can be carried out following a relatively simple method. For
example, the activity of a photosensitizer for DNA damage can be simply
estimated from the calculation of the highest occupied molecular orbital (HOMO)
energy of the molecules. In this chapter, several examples of computational
chemistry for studies in the photobiological field are introduced; the molecular
design of a photosensitizer is discussed as well. In addition, related applications
for the photochemistry of porphyrins are also presented.

Photosensitized Reaction and UVA Carcinogenesis

Exposure to solar ultra-violet (UV) radiation is undoubtedly linked to skin
carcinogenesis [1]. It has been well demonstrated in early studies that UVB (280 ~
320 nm) radiation, which constitutes about 5% of the solar UV radiation that
reaches the surface of the earth, directly activates the DNA molecule to generate
dipyrimidine photoproducts such as cyclobutane pyrimidine dimers and
pyrimidine (6-4) pyrimidone photoadducts, resulting in mutations and
carcinogenesis. However, many studies have provided sufficient evidence that
UVA radiation (320 ~ 400 nm), which accounts for the major portion of the solar
UV radiation, is also mutagenic and carcinogenic, although it is unlikely that
UVA directly activates DNA bases to produce dipyrimidine photoproducts [2, 3].
It is, therefore, generally recognized that solar UVA carcinogenesis involves a
mechanism by which UVA radiation indirectly induces DNA damage through
photosensitized reactions mediated by intracellular chromophores. Accordingly, a
variety of cellular compounds have been considered to be potential endogenous
photosensitizers. In addition, certain drugs may act as exogenous photosensitizers.
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Figure 1: Mechanisms of the photosensitized DNA damage.

Photosensitized DNA Damage

In general, the excited photosensitizer induces damage of cellular components,
including DNA, via the generation of reactive oxygen species such as singlet
oxygen ('0,) or the oxidative electron transfer mechanism, leading to cell death or
carcinogenesis. DNA damage via photo-induced electron transfer is called the
Type I mechanism, whereas the reactive oxygen mediated damage is referred to as
the Type II mechanism (Fig. 1). The Type I mechanism does not require oxygen
for the induction of DNA damage, whereas the Type II mechanism proceeds only
in the presence of oxygen. The Type I mechanism involves electron transfer from
the DNA base to the excited photosensitizer. This mechanism is dependent on the
energy of the molecular orbital (MO) of the photosensitizer (Sens), its excited
state (Sens*), and its nucleobase, namely, the oxidation potential of the DNA base
and the reduction potential of the excited photosensitizer. Guanine has the lowest
oxidation potential among the four DNA bases, that is, guanine is most likely to
be oxidized. The guanine radical cation formed through the electron transfer
reacts with water or molecular oxygen, leading to the formation of the oxidized
product of guanine. These photoproducts cause mutation and cancer. In the Type [
mechanism, one electron is transferred from guanine to photoexcited sensitizers,
resulting in damage at the consecutive guanine sequence in double-stranded DNA
[4, 5]. Various endogenous and exogenous photosensitizers mediate DNA
photodamage via this mechanism. The major Type II mechanism involves the
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generation of 'O, from photoexcited sensitizers, resulting in damage to guanines
without preference for consecutive guanines. In the minor Type II mechanism, a
superoxide anion radical (O;") is generated, and DNA damage is then induced by
reactive species generated through the interaction of hydrogen peroxide (H,0O,),
which is formed from the dismutation of O,”, with metal ions. Computational
chemistry can be used to evaluate the activity of photosensitizers.

Photodynamic Therapy

Photodynamic therapy (PDT), which is a less invasive treatment for cancer,
employs a photosensitizer and visible light to produce oxidative stress in cells and
ablate cancerous tumors [6-8]. PDT is also used for treating some non-malignant
conditions that are generally characterized by the overgrowth of unwanted or
abnormal cells. The human tissue has relatively high transparency for visible
light, especially red light, and visible light hardly demonstrates any side-effects.
Because 'O, can be easily generated by visible light, 'O, is considered as an
important reactive species of PDT. Critical sites of the generated 'O, include
mitochondria and lipid membranes [6-9]. Moreover, DNA is also an important
target biomolecule of photosensitized reactions [10-13]. Computational study can
be used for the design of a photosensitizer of PDT.

RELATIONSHIP BETWEEN THE DNA-DAMAGING ABILITIES OF
PHOTOSENSITIZERS AND THEIR HOMO ENERGIES

Computational chemistry is important tool to evaluate the activity of
photosensitizer. The oxidative activity of photosensitizer depends on the HOMO
level. Lower HOMO energy level is advantageous for the oxidative electron
transfer (Fig. 2). The calculation of HOMO energy may be applied to predict the
activity of various photosensitizers. Thus, the mechanism of DNA photodamage
induced by xanthone (XAN) analogues (Fig. 3), exogenous photosensitizers and
the relationship between the DNA-damaging abilities and their HOMO energies
were investigated. Derivatives of XAN and its analogues, thioxanthone (TXAN)
and acridone (ACR), have been isolated from various plants [14-18] and used as
antitumor drugs [19]. The mechanism of DNA damage induced by UVA
irradiation in the presence of XAN analogues was examined using >’P-labeled
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DNA fragments obtained from the p53 tumor suppressor gene. The HOMO
energies of XAN analogues were estimated from ab initio MO calculation.

LUMO ——
l Oxidative

Electron transfer

/ —— Homo
HOMO —& l ; 4}_ Target biomolecule

Photosensitzer

Energy

Figure 2: HOMO energy level and the oxidative electron transfer from the target biomolecule.

XAN: Xanthone TXAN: Thioxanthone ACR: Acridone

Figure 3: Structures of xanthone analogues.

Calculation of HOMO Energies of Xanthone Analogues

HOMO energies of XAN, TXAN and ACR were estimated from ab initio MO
calculation at Hartree-Fock 6-31G* level. Structures of these molecules were
optimized by calculation of equilibrium geometry at Hartree-Fock 6-31G* level.
These calculations were performed using Spartan ’02 for Windows
(Wavefunction Inc., CA, USA). Calculated HOMO energies of XAN, TXAN and
ACR were 8.57, 8.07 and 7.75 eV, respectively. These values are larger than that
of 5°-G of GG in double-stranded DNA (6.73 eV) [20], suggesting that
photoexcited XAN analogues can oxidize 5’-G of GG through electron transfer
from an energetic viewpoint.

Experimental Results of DNA Damage Photosensitized by Xanthone
Analogues

DNA damage induced by UVA irradiation in the presence of XAN analogues was
examined using **P-labeled DNA fragments by an electrophoresis. The damaged
sites were determined by direct comparison of the positions of the
oligonucleotides with those produced by the chemical reactions of the Maxam-
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Gilbert procedure [21]. It was also measured that the content of 8-0x0-7,8-
dihydro-2’-deoxyguanine (8-oxo-G) [22], an oxidative product of 2’-
deoxyguanosine (dG), formed by photoexcited XAN analogues with an
electrochemical detector coupled to high-performance liquid chromatography.
The present study has demonstrated that photoexcited XAN analogues as well as
riboflavin, a Type I photosensitizer [23], generate piperidine-labile products
specifically at 5’-G of GG sequence and both guanines of 5’-AGGA sequence in
double-stranded DNA. Effects of scavengers of reactive oxygen and D,O on DNA
damage suggested that the contribution of reactive oxygen (Type II mechanism)
to the DNA photodamage is negligibly small. Therefore, these results can be
reasonably explained by assuming that nucleobase oxidation is induced by
photoexcited XAN analogues mainly through electron transfer (Type I
mechanism) (Fig. 4). Guanine is most easily oxidized among the four DNA bases
because the oxidation potential of guanine is lower than that of the other DNA
bases [24-26]. MO calculations have revealed that 5’-G in GG sequence in
double-stranded DNA significantly lowers the HOMO energy [20, 27]. Therefore,
the cation radical on the 5°-G in GG sequence arises from either the initial
electron abstraction of this guanine by photoexcited XAN analogues or through
charge migration from a relatively distant one-electron oxidized nucleobase [24,
28-32]. The formed guanine cation radicals may react with water molecules to
form the C-8 OH adduct radical [24, 28]. This radical may be converted by a
reducing process into 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyGua)
residue, a piperidine-labile product [24, 28]. On the other hand, competitive
oxidation, which may be achieved by molecular oxygen, gives rise to 8-oxo-G
[24, 28, 33]. The formation of 8-0x0-G causes DNA misreplication that may lead
to mutations such as G-C — T-A transversion [34, 35]. Although the 8-0x0-G site
is not efficiently cleaved under piperidine treatment [36], 8-oxo-G can be
converted into piperidine-labile products (e.g. imidazolone, oxazolone) through
further oxidation [24, 37, 38]. Imidazolone and oxazolone might be also produced
through deprotonation of guanine cation radical followed by reaction with
molecular oxygen [24, 28, 39, 40]. The present study regarding photon fluence
dependence of DNA photodamage suggests that 8-oxo-G oxidation into
piperidine-labile products can occur in an irradiation dose-dependent manner. It
has been reported that imidazolone and oxazolone are major oxidation products of
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guanine by the Type I mechanism [39, 40]. Imidazolone forms a stable base pair
with G comparable with the Watson-Crick G-C base pair [37, 38] and may cause
G-C — CG transversion [41-43]. These transversions can partly explain the
mutation induced by UV A as previously reported [2].

oo - [oto] — ool

e < guanine cation radical
+

5-NNGGNN-3' . 5-NNGGNN-3'
3'-NNCCNN-5' 3'-NNCCNN-5'
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Figure 4: Possible mechanism of base oxidation at 5’ site of GG sequence in double-stranded
DNA induced by UV A-irradiated xanthone analogues.

Relationship between the Calculated HOMO Energy and DNA Damage

The extents of DNA damage increased depending on the HOMO energies of
XAN, TXAN and ACR. Fig. 5 shows the plots of the quantum yields of DNA
damage against the gaps of HOMO energies (AE) between the photosensitizers
and 5°-G of GG. The quantum yield of 8-o0xo-G formation (®g.ox0.g) Was
estimated using the photon fluence and molar absorption coefficients of XAN
analogues. Similarly, the relative quantum yield of the piperidine-labile product
(®p) was estimated from the results of the electrophoresis. The logarithm plots
indicate that the DNA-damaging abilities of these photosensitizers almost
increased exponentially with AE (Fig. SA). The plots have shown that ®p is
almost proportional to ®g.ox..g. The electron transfer reaction should also be
affected by an interaction between DNA and photosensitizer. The absorption and
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fluorescence spectra of XAN analogues were not significantly changed by
addition of DNA (data not shown), suggesting that noncovalent bonding to DNA
can be negligible. Therefore, the quantum yield of the electron transfer reaction
may be determined by the collision frequency between photoexcited XAN
analogues and DNA in addition to AE. The collision frequency can be determined
by the diffusion control rate coefficient (kqif), concentration of nucleobase
([base]), triplet quantum yield (®ji,) and lifetime of excited triplet state (z') of
photosensitizer. Because kqir and [base] can be taken as constants, the collision
frequency varies depending on @iy, X roT. The values of ®;,. and roT of XAN
analogues were previously reported [44]. The values of ®gx0.c and @p were
divided by ®j;. ¥ %' and plotted against AE (Fig. 5B). These plots also showed an
increase of extent of DNA damage exponentially, almost depending on AE.
Strictly, the DNA-damaging ability of the photosensitizer should be determined
by not only AE but also other factors containing the free energy of the electron
transfer reaction and an interaction between DNA and photosensitizer. However,
these results suggest that the DNA-damaging abilities of these XAN analogues
practically depend on their HOMO energies mainly.
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Figure 5: Relationship between the DNA-damaging abilities of xanthone analogues and their
HOMO energies. The quantum yield of 8-oxo-G formation (®g..g) and the relative quantum
yield of piperidine-labile product (®p) by UVA (wavelength: 365 nm) irradiation in the presence
xanthone analogues (A) and those values divided by (®j.x7") (B) are plotted against AE.
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Summary of the Relationship between DNA-damaging Activity of
Photosensitizer and the HOMO Energy

In summary, this study demonstrated that photoexcited XAN analogues,
exogenous photosensitizers, mediate poly-G-specific DNA oxidation through
electron transfer. DNA oxidation through photoinduced electron transfer may play
an important role in photocarcinogenesis mediated by photosensitizers. This study
has also shown that the DNA-damaging abilities of XAN analogues increase
exponentially with their HOMO energies. It is concluded that the DNA-damaging
ability of derivatives of XAN analogues can be roughly estimated from their
HOMO energies.

COMPUTATIONAL EVALUATION OF CHEMOPREVENTIVE ACTION
ON PHOTOSENSITIZED DNA DAMAGE

Photosensitized damage to biomacromolecules, such as DNA and protein,
participates in phototoxicity and photogenotoxicity of drugs and solar-UV
carcinogenesis [1]. Various endogenous molecules and natural products act as
photosensitizers [23, 24, 45-49]. In addition, a side effect of PDT [6] is also
caused by photosensitized biomacromolecular damage. An antioxidant can
scavenge reactive oxygen species generated through photosensitized reaction and
protect against cancer occurrence [50]. For example, B-carotene is an efficient
scavenger of 'O,. However, B-carotene, vitamin A, and vitamin E generate
reactive oxygen species through the oxidation process, leading to oxidative DNA
damage [51, 52]. Indeed, an excess amount of these antioxidants elevates cancer
incidence [53-55]. A physical sunscreen does not show a side effect, but cannot
effectively protect the phototoxicity induced by visible-light. It has been
demonstrated that the photoexcited pteridine moiety of folic acid is effectively
quenched by the aminobenzoyl moiety through intramolecular electron transfer,
resulting in the inhibition of DNA photodamage by the photoexcited folic acid
[48]. This result leads us to the idea that an effective quencher can be used as a
chemopreventive agent for photodamage of biomacromolecules. In this study, the
action of XAN derivatives (bellidifolin (BEL), gentiacaulein (GEN),
norswertianin (NOR), and swerchirin (SWE)) (Fig. 6) on photosensitized DNA
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damage was demonstrated. These XAN derivatives were isolated from various
plants [56-60]. The preventive effects of XAN derivatives on DNA damage by
photoexcited riboflavin were examined. The mechanism of the preventive effect
on DNA photodamage was investigated by ab initio MO calculations [61].

Swerchirin (SWE) Bellidifolin (BEL)

Figure 6: Structures of xanthone derivatives.

Calculation of Excited Triplet State Energies and Ionization Potentials of
Xanthone Derivatives and Riboflavin

The excited triplet state energies of XAN derivatives and riboflavin were
estimated from the density functional treatment (DFT) at the B3LYP/6-31G*
level. The ionization potentials (/Ps) of XAN derivatives and riboflavin were
estimated from ab initio MO calculation at the Hartree-Fock 6-31G* level. The
structures of these molecules were optimized by the calculation of equilibrium
geometry at the Hartree-Fock 6-31G* level. These calculations were performed
utilizing Spartan’02 for Windows (Wavefunction Inc.). The energies of an excited
triplet state (E") of XAN derivatives were higher than those of riboflavin (Table 1),
suggesting that XAN derivatives cannot quench the excited riboflavin through
excitation energy transfer. The calculated /Ps of BEL, GEN, NOR, and SWE
were larger than those of riboflavin (Table 1), suggesting that the electron transfer
from XAN derivatives to photoexcited riboflavin is possible. These results have
shown that the excited triplet state of riboflavin can be quenched through electron
transfer from XAN derivatives and subsequent reverse electron transfer.
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Table 1: Calculated triplet energy and /Ps of xanthone derivatives and riboflavin

Compounds E" / keal mol IP/ eV
BEL 68.40 8.11
GEN 70.27 8.14
NOR 66.98 8.14
SWE 70.74 8.20
XAN 79.52 8.57
Riboflavin 57.00 8.80

E": Energies of excited triplet state of compounds calculated from ab initio MO method.

Experimental Results of Preventive Effect of Xanthone Analogues on DNA
Damage Photosensitized by Riboflavin

XAN derivatives, BEL, GEN, NOR, and SWE, inhibited DNA damage induced by
photoexcited riboflavin. Photoexcited riboflavin oxidizes specifically at the
underlined G of 5°-GG and 5’-GGG sequences in double-stranded DNA through
photoinduced electron transfer (Type I mechanism). The underlined G in the 5’-GG
and 5’-GGG sequences acts as a hole-trap [20, 27] and is finally oxidized through
hole-transfer [62]. These photosensitizers generate 8-oxo-G and piperidine-labile
products, such as imidazolone and oxazolone, at consecutive G residues [23, 63].
The piperidine-labile products can be generated via further oxidation of 8-oxo-G.
These photoproducts cause mutation and/or cancer [34, 35, 37, 38, 41, 42]. A
qualitative evaluation by the electrophoresis showed that GEN and NOR act as a
protector for piperidine-labile DNA photodamage, whereas the preventive action of
BEL and SWE is very weak. The preventive action of these XAN derivatives was
evaluated quantitatively by the inhibitory effect of 8-o0xo-G formation by
photoexcited riboflavin (Fig. 7). The preventive action of XAN derivatives increased
in the following order: GEN > NOR >> BEL > SWE. Especially, 5 uM GEN
completely inhibited 8-0x0-G formation by 50 uM riboflavin. These findings have
shown that GEN can act as most effective chemopreventive agent for
photosensitized DNA damage among the four XAN derivatives.

Mechanism of the Preventive Effect

Spectroscopic studies have shown that these compounds cannot act as a physical
sunscreen. The fluorescence intensity of riboflavin was less affected by addition of
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XAN derivatives. These findings exclude the interaction between the ground state of
riboflavin and XAN derivatives and the quenching of the excited singlet state of
riboflavin. The possible mechanism of the prevention of the DNA photodamage is
the quenching of the excited triplet state of riboflavin (Fig. 8). MO calculations have
shown that, although the quenching through energy transfer is impossible, the
mechanism through electron transfer is possible. The electron transfer from XAN
derivatives to the excited triplet state of riboflavin generates a radical ion pair, and
reverse electron transfer regenerates a ground state of riboflavin and XAN
derivative. The excitation energy of the photosensitizer is dispersed as thermal
energy through this quenching mechanism. The 7,' of riboflavin is 22 ps in aqueous
media [64]. The rate constant of quenching reaction of triplet excited state of
riboflavin is required to be the magnitude at least comparable to the decay rate
constant (1/zo" = 4.5 x 10* s™"). The value of this rate constant is close to that of the
diffusion control reaction rate constant (kgir) in this experimental condition. The
value of kgir can be estimated from following equation:

kair= 8RTTQ]/37 (1)

where R, T, [Q], and # are gas constant, absolute temperature, concentration of
XAN derivatives, and viscosity of water (8.91 x 10 kg m™ s™), respectively.
Therefore, the excited riboflavin should be quenched by XAN derivatives in the
diffusion control process.
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Figure 7: Effects of xanthone derivatives on the formation of 8-0x0-G by photoexcited riboflavin.
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Figure 8: Mechanism of chemopreventive effect of xanthone derivatives on DNA photodamage
by riboflavin.

Summary of the Mechanism of Chemoprevention for Phototoxicity

In summary, this study demonstrated that XAN derivatives prevent DNA damage
by photoexcited Type I photosensitizers by quenching of the excited triplet state
of a photosensitizer. This chemopreventive mechanism is not based on
antioxidation or the effect of sunscreen. This preventive mechanism may be used
for the novel chemoprevention of phototoxicity, photogenotoxicity, and solar
carcinogenesis. An antioxidant, such as B-carotene, can scavenge reactive oxygen
species generated through photosensitized reaction and protect against cancer
occurrence [50]. However, B-carotene, vitamin A, and vitamin E generate reactive
oxygen species through the oxidation process, leading to oxidative DNA damage
[51, 52]. Indeed, an excess amount of these antioxidants elevates cancer incidence
[53-55]. Although this study does not exclude the possibilities of actions as
antioxidant or sunscreen by XAN derivatives, these results have shown that XAN
derivatives act as effective quencher and protect photosensitized DNA damage.
The quenching mechanism of an excited photosensitizer does not lead to the
formation of a secondary reactive species. Furthermore, this quencher can protect
from the phototoxicity induced by visible-light, which is difficult to shade with a
physical sunscreen.



40 Frontiers in Computational Chemistry, Vol. 2 Kazutaka Hirakawa
- Fluorescence
(Strongly Fluorescent)

2V

' l (Less FIuorescent)

Figure 9: Scheme of the formation of strongly fluorescent pteridines through ROS-mediated
decomposition of folic acid analogues.

COMPUTATIONAL INVESITIGATION OF FLUORESCENCE PROBE
FOR REACTIVE OXYGEN DETECTION

Next topic is the evaluation of the possibility of molecules for fluorescence probe to
detect reactive oxygen species (ROS) (Fig. 9). Molecular probes and molecular
biosensors for ROS are important in environmental and bioanalytical sciences
[65-68]. The modification of biomacromolecules upon exposure to ROS, including
H,0,, O,", *OH, and 102, is the likely initial event involved in the induction of the
mutagenic and lethal effects of various oxidative stress agents [69-73]. Therefore,
the activity of ROS generation by various compounds is closely related to their
toxicity, carcinogenicity, or both. H,O, is a long-lived ROS and plays an important
role in biomacromolecular damage induced by various chemical compounds [71-
73]. As mentioned above, 'O, is also an important ROS and can mediate the
oxidative degradation of many molecules [65-68]. The detection of 'O, and
determination of the quantum yield of 'O, generation (®,) by a photosensitizer are
necessary to evaluate the PDT activity or phototoxic risk of photosensitizers. The
measurement of the near-infrared emission through a deactivation process of 'O, is
sensitive and one of the most important methods to detect 'O, [73-75], but this
method requires the use of costly apparatuses. Another sensitive method for 'O,
detection is fluorometry using a molecular probe, which is the less fluorescent
precursor of the fluorescent molecule [76-79]. Fluorometry is very sensitive and
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useful method for other ROS including H,O,. In general, the sensitive fluorometry
of ROS requires costly fluorescent probe compounds. In this section, the fluorometry
of H,O, and 102 (photosensitized 102 generation) using folic acid and its
commercially available less fluorescent analogue, N-[4-[[(2,4-diamino-6-
pteridinyl)methylJmethylamino]benzoyl]-L-glutamic acid (methotrexate; MTX,
Fig. 10) [80], was investigated. UV light or a photosensitized reaction causes the
oxidation of folic acid, leading to the formation of pterine-6-carboxylic acid (PCA)
and aminobenzoyl-L-glutamic acid (ABG) [48, 81-84]. The fluorescence intensity of
PCA is strong, although folic acid itself scarcely fluoresces [48, 85]. This
fluorescence enhancement mechanism is similar to that of fluorescence probes to
detect ROS and reactive intermediates of peroxide. Such a character of folic acid led
us to hypothesize that the fluorescence analysis of decomposed folic acid could be
used as an indicator of oxidative stress. The determination method of @ using these
molecules is also reported [85].

Calculation of the Molecular Orbital Energies of Folic Acid and MTX

The MO energy level of folic acid and MTX was estimated from the ab initio MO
calculation at the Hartree-Fock/6-31G* level. The structures of these molecules were
also optimized by this calculation. The order of the energy levels of MO in the
ground state was calculated by this method to estimate the electron transfer direction
in the photoexcited state. This calculation was performed utilizing Spartan’06.
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Figure 10: Structures of folic acid and methotrexate.
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Figure 11: Calculated MO energy levels of folic acid analogues.

Strategy for the Fluorometry of Reactive Oxygen Species Using Folic Acid
and Methotrexate

The calculated energy level of the MO showed that the aminobenzoyl moieties of
folic acid and MTX are the electron-donating groups (Fig. 11), suggesting that the
fluorescence from their pteridine moieties can be quenched through intra-
molecular electron transfer from their aminobenzoyl moieties [48, 80, 81]. It has
been reported that the C°-N'® bonds connecting the pteridine and aminobenzoyl
moieties of folic acid [48, 80-85] and its analogues [80, 85-89] are unstable
against oxidative stress agents. Reactive oxygen-mediated cleavage of this C*-N'°
bond or oxidation of the electron-donating moiety should recover the fluorescence
intensity of their pteridine moieties (Fig. 12).

Experimental Results of Fluorometry of Hydrogen Peroxide Using Folic Acid
Analogues

The absorption and fluorescence spectra of folic acid and related compounds are
presented in Fig. 13. In general, pteridine compounds absorb the ultra-violet A
region and show fluorescence in the visible-light region. Although folic acid itself
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Figure 12: Strategy for the ROS detection using folic acid analogues.

scarcely fluoresces, PCA shows strong fluorescence in the visible-light region.
The fluorescence quenching of folic acid is due to the aminobenzoyl moiety [48].
Folic acid was decomposed by H,0, in the presence of Cu(Il) and increased the
fluorescence intensity in a dose-dependent manner. At pH 7.6, folic acid exhibited
optimum stability [90], and the sensitivity was independent on pH in the range 6.0
~ 8.0. The limit of detection (LOD; at S/N=3) for H,O, was 0.5 uM under this
experimental condition. The fluorescence intensity of folic acid was not increased
by H,O, without the metal ion, indicating that H,O, itself does not decompose
folic acid. Two scavengers of *OH, ethanol and mannitol, showed an inhibitory
effect on the decomposition of folic acid but could not completely inhibit the
decomposition. H,O, and Cu(Il) are considered to generate other reactive species,
including copper-peroxo intermediates, which are less reactive than *OH [70].
Relevantly, a reactive species generated from H,O, and Cu(Il) cannot be
completely quenched by typical *OH scavengers but effectively damages
biomacromolecules, such as DNA [70, 91, 92].

Folic acid was slightly decomposed by H,O, plus Fe(Il). The decomposition of
folic acid mediated by Fe(Il) was completely inhibited by *OH scavengers,
suggesting the involvement of *OH generated through the Fenton reaction. Since
the lifetime of *OH is very short [93, 94], *OH cannot effectively decompose folic
acid. Other metal ions, such as Ca(Il), Mg(II), Fe(IIl), Co(II), Ni(I), Ag(I), Pd(II),
and Au(Ill), did not mediate the decomposition of folic acid by H,O,. The
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selectivity of metal ions is due to the activation of H,O,. The effect of
fluorescence quenching by these heavy metal ions is negligible. Superoxide from
KO, and sodium hypochlorite plus H,0O,, a 102 source, did not induce the
fluorescence enhancement of folic acid. These findings demonstrate that folic acid
can be selectively used for the fluorometry of H,O, in the presence of Cu(Il). The
concentration of H,O, ([H20;]) can be determined by a calibration curve method.
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Figure 13: Absorption and fluorescence spectra of folic acid and related compounds. PCA: Pterin-
6-carboxylc acid. ABG: Aminobenzoyl-L-glutamic acid.
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Figure 14: Fluorescence enhancement of methotrexate by 'O, generated through photosensitized
reaction of methylene blue.
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Experimental Results of Fluorometry of Singlet Oxygen Generated by
Photosensitized Reaction Using Folic Acid Analogues

Singlet oxygen generated via photosensitized reaction decomposes less-
fluorescent folic acid and MTX, leading to the formation of a strongly fluorescent
pteridine compound in D,O (Fig. 14). This method can be applied to determine
the @, of photosensitizers absorbing visible light. One of the most important
applications of the photosensitized reaction is PDT, in which a water-soluble
photosensitizer absorbing visible light is necessary. The determination of @, is
required to evaluate the activity of the PDT photosensitizer. In addition, the value
of @, is important for the risk evaluation of phototoxic materials and various
other studies about the photochemical oxidation process. In many cases, the
determination of ®, of the water-soluble photosensitizer was carried out in D0,
because the detection of 'O, is easier due to its longer lifetime than that of H,O.
The present method can be simply performed for these purposes without an
expensive apparatus and reagent.

Summary of the Examination of Reactive Oxygen Probe

Reactive species generated from H,O, and Cu(II) or 'O, generated through
photosensitized reaction oxidized folic acid and MTX, leading to the cleavage of
the C°-N' bond and the formation of strongly fluorescent pteridine. These
findings demonstrate that folic acid analogues could be used for the fluorometry
of ROS. The reactive species from H,O, and Cu(Il), such as copper-peroxo
intermediates [70, 91, 92], are much more reactive than H,O, and are considered
to play important roles in the damage to biomacromolecules. Since the
fluorescence quantum yield of pteridine, such as PCA, is markedly larger than
that of folic acid analogues [48, 95], this analysis is sensitive to HO, detection.
This method can be applied to the detection of small amounts of H,O, generated
from a carcinogenic compound. In addition, the ®, of the water-soluble
photosensitizer could be determined using the folic analogues.

COMPUTATIONAL STUDY OF THE PHOTOCHEMICAL PROPERTY
OF BERBERINE AND PALMATINE

Photosensitized generation of 'O, contributes to phototoxicity and
photocarcinogenesis [70, 96-98]. Furthermore, this process is important in the
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medical application of photosensitized reactions such as PDT [6-8]. Critical sites
of the generated 'O, include mitochondria and lipid membranes [6-8, 65, 99].
Moreover, DNA is also an important target biomolecule of photosensitized
reactions [63, 70, 72]. Since the administered photosensitizers necessarily interact
with cellular components, the photosensitized reaction occurs in a
microenvironment consisting of biomolecules [100]. Therefore, the interaction
between biomolecules such as DNA and photosensitizers plays an important role
in the photosensitized reaction and may be applied to the control of the activity of
PDT photosensitizers [101]. Berberine and palmatine (Fig. 15) are the alkaloid
constituents of Goldenseal (Hydrastis canadensis L.) [102], and display cytotoxic
activities against various human cancer cell lines [103]. Their phototoxicity and
DNA-photodamaging abilities have been also reported [71, 104, 105]. These
alkaloids bind to the DNA [106-109] and form the fluorescent intermolecular
complexes [71, 110] with DNA. It has been reported that berberine binds
preferentially to AT-rich minor groove [108], and the binding property of
palmatine consistent with a mixed-mode DNA binding model in which a portion
of the ligand molecule intercalates into the duplex, while the nonintercalated
portion protrudes into the minor groove [107]. The DNA-binding interaction
changes their photochemical property and markedly enhances the fluorescence
intensity of these alkaloids. Their chemical property is useful in designing an
experimental system to clarify the environmental effects of DNA, one of the most
important biomaterials, on a photosensitized reaction. Moreover, the
microenvironmental effect of the DNA strand should be one of the key factors in
controlling the activity of photosensitizers, of which the target biomolecule is
DNA. In this study, the photosensitized 'O,-generation activity and the
photochemical property of these alkaloids were examined.

Electron-donor Electron-donor
iso-quinoline moiety iso-quinoline moiety
Electron-acceptor Electron-acceptor

\ ‘ A ;‘

N N
H,CO - H4CO -
OCHj OCH;
Berberine Palmatine

Figure 15: Structures of berberine and palmatine.
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Calculations of Intermolecular Complex between DNA and the Alkaloids

The equilibrium geometry of an intermolecular complex between double-stranded
DNA and berberine or palmatine was obtained by molecular mechanics calculation
utilizing the Spartan 04°. The geometry of 20-mer of double-stranded DNA was
constructed using Spartan 04’. The absorption transitions of these alkaloids binding
to DNA were calculated by the semi-empirical Zerner’s intermediate neglect of
differential overlap (ZINDO) procedure utilizing the CAChe WorkSystem Pro 6.0
(Fujitsu Ltd. 2003, Tokyo, Japan). The energy of their orbital was estimated by DFT
(B3LYP/6-31G*) calculation utilizing the Spartan 04°.
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Figure 16: Experimental and calculated absorption spectra of berberine. The sample contained 50
UM berberine or palmatine in sodium phosphate buffer (pH 7.6) (A). The calculated spectrum of
the isoquinoline compound (B).

Experimental and Computational Study of the Absorption Spectra of
Berberine and Palmatine under an Interaction with DNA

The absorption maximum of these photosensitizers showed a blue shift depending
on the solvent polarity, showing that this absorption is due to the n-n* transition.
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The ZINDO calculation indicated that this absorption band is due to the excitation
of the isoquinoline moiety of berberine and palmatine (Fig. 16). The absorption
spectra of DNA-binding photosensitizers were estimated from the subtraction of
the absorption spectra of free photosensitizers from those of DNA containing
photosensitizers (Fig. 17). The binding ratio was calculated from the binding
constants and the DNA concentration. The obtained spectra of these alkaloids
showed a large red shift through the complex formation with DNA in an aqueous
solution. The long wavelength absorption maxima (berberine: 449 nm, palmatine:
445 nm) were similar to those in dichloromethane. This large red shift could not
be explained by the reduced polarity effect of DNA microenvironment, in which
the polarity of surroundings is almost the same as that of ethanol [111]. ZINDO
calculation of absorption spectra of the alkaloids interacting with phosphate anion
of DNA showed a large red shift (Fig. 18), suggesting that the spectral shifts by
the DNA binding was due to the electrostatic interaction. Moreover, the ZINDO
calculation showed that the structure change of these photosensitizers by the
binding to DNA scarcely affected their spectra.

1.2
1L o (A) Berberine + DNA |
I T (B) Berberine

8 08F { i — ©®-6 .
g
5 06 i/ .
wn : B
2 : .
< i

300 350 400 450 500 550
Wavelength / nm

Figure 17: Absorption spectra of berberine and the complexes with DNA. The sample contained
50 puM berberine (A) in the presence of 200 bp-uM calf thymus DNA in sodium phosphate buffer
(pH 7.6). The absorption spectrum of free berberine (B) in the above sample was calculated from
the binding constant and concentrations of berberine and DNA. The absorption spectrum of the
DNA-berberine complex was estimated from the subtraction of the spectrum of free berberine
from that of DNA containing sample (C).
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Computational Study of Direction of the Intramolecular Electron Transfer in
the Photoexcited Berberine and Palmatine

Berberine and palmatine consist of isoquinoline moiety and dimethoxy benzene
moiety. The absorption spectrum of the isoquinoline moiety was calculated from
the ZINDO method (Fig. 16). The comparison between the observed and
calculated absorption spectra showed that the S; state of berberine and palmatine
is excitation of the isoquinoline moiety. The DFT calculation showed that the
HOMO of these alkaloids is localized on the dimethoxy benzene moiety. These
calculation results suggest that S; of berberine and palmatine can be quenched
through intramolecular electron transfer from their dimethoxybenzene moiety and
the short photoexcited lifetimes of these alkaloids are due to this effect.
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Figure 18: Experimental and calculated absorption spectra of palmatine. The sample contained 50
puM palmatine with or without 200 bp-uM calf thymus DNA in sodium phosphate buffer (pH 7.6)
(A). Calculated absorption spectra of palmatine with or without DNA (B).

Control of Photosensitized Singlet Oxygen Generating Activity of Berberine
and Palmatine through Interaction with DNA

Berberine and palmatine bound to DNA by an electrostatic interaction, leading to
the formation of a fluorescent inter-molecular complex [71, 75, 110]. The
thermodynamic study showed that the DNA binding is enthalpy driven. The
activity of photosensitizers to generate 'O, is sensitive to their surroundings. The
photosensitized 'O, generation from berberine and palmatine was markedly
enhanced by the DNA-binding. The typical emission from 'O5 at ca. 1270 nm was
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Figure 19: Near-infrared emission spectra from photo-irradiated berberine.

observed during photo-irradiation of the DNA-photosensitizer complexes. In the
absence of DNA, the photo-irradiated berberines showed no emission around
1270 nm in aqueous solution. These findings have demonstrated that photoexcited
berberines can generate 'O, only when the DNA-photosensitizer complex is
formed (Fig. 19). This study showed that the microenvironment of the DNA
strand activates the 102 generation of the photosensitizer. The S; state of these
alkaloids immediately returns to the ground state via a nonradiative mechanism
[104, 105]. This rapid deactivation should be the reason for the decreased 'O,
generation by photosensitized berberine and palmatine in an aqueous solution
(Fig. 20). The measurement of the fluorescence decay demonstrated that the
DNA-binding interaction stabilizes the photoexcited states of berberine and
palmatine, resulting in the enhancement of their S; lifetimes. The ZINDO
calculation showed that the S; state is produced by an excitation of their
isoquinoline moieties. The DFT calculation showed that their HOMOs are
localized on their dimethoxybenzene moieties. Therefore, the S; of berberine and
palmatine can be quenched through intramolecular electron transfer from their
dimethoxybenzene moieties. An inhibition of the intramolecular electron transfer
can increase the lifetime of the photoexcited states of these photosensitizers. The
spectral measurements suggest that the photochemical property of these
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photosensitizers is mainly affected by the electrostatic interaction with anionic
polymer DNA. The electrostatic interaction between the positive charge of the
alkaloids and the negative charge of the phosphate group of DNA should increase
the energy levels of the isoquinoline moieties of berberine and palmatine. The
large red shift of their spectra of these alkaloids by the DNA binding is possibly
due to the electrostatic interaction. Therefore, the levels of the CT states are raised
through this interaction, leading to the inhibition of the intramolecular electron
transfer and a prolongation of their photoexcited states. Consequently, the
intersystem crossing yields of these alkaloids should be increased by the DNA-
binding, resulting in the enhancement of the energy transfer to °O,. In the
processes of intersystem crossing and 'O, generation, magnetic interactions
including spin-orbit coupling is important [112, 113].
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Figure 20: Mechanism of activity control of berberine and palmatine through interaction with
DNA.

In general, other ROS, for example, O,”, HyO,, and *OH, can also contribute to
DNA damage [69-73]. Further, the Type I mechanism is also important process of
DNA photodamage [4, 5]. Photoexcited these alkaloids might generate O,", H,O,
and *OH through following reactions [114, 115]:

3Sens* + 0, — Sens™ + 0,” ()
0,"+H" — HO, (3)
HO, + H+e — H,0, 4)

H,0,+H" + e — H,0 + *OH (5)
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where *Sens* is the triplet excited state of these alkaloids and Sens™ is the radical
cation of these alkaloids. The electron in the equations (4) and (5) can be provided
by O," or endogenous metal ions, such as Fe(Il) and Cu(I). In addition, DNA
photodamage by berberine and palmatine through the Type I mechanism may be
possible from the energetically point of view [116]. However, the patterns of
DNA damage photosensitized by berberine and palmaine were quite similar to
that by the Type II mechanism [71]. Photoexcited berberine and palmaine
oxidized DNA at every guanine residue and other bases were not damaged. O~
and H,O, themselves cannot induce DNA damage without metal ions, and *OH
damages DNA at every base [4, 5]. H,O, induces the oxidation of thymine,
cytosine, and guanine in the presence of copper ion [91, 92]. In the case of the
Type I mechanism, consecutive guanines, such as underlined G of 5°-GG and 5°-
GGG, are selectively damaged [4, 5, 63]. These results suggest that 'O, is the
predominant reactive species responsible for DNA photodamage by these
alkaloids.

Conclusion of the Controlled Generation of Singlet Oxygen by Berberine and
Palmatine

This study demonstrated that berberine and palmatine bind to DNA, and their
activity in the photosensitized 'O, generation is markedly enhanced. This study
showed that the electrostatic interaction with a DNA strand can change the 'O,
generation activity of photosensitizers. Singlet oxygen is the major oxidative and
damaging species formed during the Type II process of photosensitization and
plays an important role in the PDT process. It has been reported that 'O, is able to
induce the oxidation of cellular DNA. 102 can diffuse in a very short distance
during its lifetime, which is much shorter in the cell (0.01 ~ 0.2 ps) than in simple
aqueous solutions (2 ~ 4 pus) [65, 117]. Therefore, the contact of a photosensitizer
with biomacromolecules, such as DNA, is very important. In addition, control of
key therapeutic parameters, including 'O, generation level, is also important and
optimized synthetic procedures of PDT photosensitizers have been developed
[101, 118]. This mechanism through the interaction with DNA microenvironment
may be applicable to the activity control of the PDT photosensitizers.
Computational study played the important role in the speculation of the
mechanism of the controlled generation of 'O, by berberine and palmatine.
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MOLECULAR DESIGN OF PORPHYRIN PHOTOSENSITIZERS FOR
CONTROL OF SINGLET OXYGEN GENERATION THROUGH
INTERACTION WITH DNA

Computational chemistry is useful to design the photosensitizer for PDT. As an
anti-cancer agent, DNA is one of the most important target biomacromolecules,
and DNA-targeting drugs have been extensively studied [119, 120]. An important
mechanism of PDT is the oxidation of biomacromolecules by lOz, which is
generated through energy transfer from the excited photosensitizer to molecular
oxygen. A DNA-selective photosensitizer should be developed to improve the
treatment effect [101, 121-123]. The control of 'O, generation by a specific DNA
sequence using photosensitizer/quencher/oligonucleotides systems has been
studied [101, 121, 122]. The demonstrated principle is selectively placing the 'O,
photosensitizer close to a molecule that can be quench the excited state of the
photosensitizer by using a positioning system that can then be manipulated to
change the distance between photosensitizer and the quencher. Furthermore, the
pH regulated 'O, photosensitizer/quencher/DNA i-motif system was reported
[123]. As mentioned above, berberine and palmatine, which can easily bind to
DNA through electrostatic interaction and generate 'O, only when the DNA-
photosensitizer complex is formed [71, 75]. The interaction changes their redox
potentials and suppresses the quenching by intramolecular electron transfer,
resulting in the elongation of the lifetime of the photoexcited state, making the
energy transfer to molecular oxygen possible [75]. Berberine and palmatine can
act as a DNA-targeting photosensitizer, and guanines are specifically oxidized
through 'O, generation. However, these photosensitizers cannot absorb long-
wavelength light, which is advantageous for PDT. Thus, on the basis of this
controlling mechanism of 'O, generation, a porphyrinoid photosensitizer, which is
important for clinical use because of its high absorptivity for the red region (> 630
nm) was designed and synthesized [124].

Molecular Orbital Calculation for Design of Photosensitizer

The equilibrium geometry of porphyrin and its MO energy were estimated from
the ab initio MO calculation at the Hartree-Fock/6-31G* level utilizing the
Spartan 08’. Fig. 21 shows the molecular structure and the MO of the synthesized
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photosensitizer, An-TPyP, in which the anthracene moiety directly connects to the
porphyrin ring as an electron donor. The MO calculation was performed at the
Hartree-Fock 6-31G* level to predict the equilibrium geometry and the
photophysical property of the porphyrinoid photosensitizer. The optimized
structure of An-TPyP indicated the steric rotational hindrance of the anthracene
moiety around the meso-position of the porphyrin, which keeps the two =-
electronic systems nearly orthogonal to each other (Fig. 22). The MO calculation
showed that the HOMO of the protonated An-TPyP locates on the anthracene
moiety (Fig. 21), suggesting that the S; excitation of the porphyrin ring
corresponds to the electron transition from the next HOMO to the LUMO.
Consequently, the photoexcited state of the protonated form of An-TPyP should
be deactivated via intramolecular electron transfer from the anthracene moiety to
the porphyrin moiety, forming a CT state (Fig. 23). The electrostatic interaction
with anionic DNA and the hydrophobic environment of the DNA strand should
raise the CT state energy, leading to the recovery of the photochemical activity, as
in the case reported previously [71, 75]. From the molecular mechanics
calculation and the CPK model, An-TPyP is considered to bind to the DNA major
groove (Fig. 24). A similar binding form of another cationic porphyrin has been
reported [125].

® Howmo t
(-11.84 eV) _1_1_ next HOMO
Anthracene (-13.05 eV)
moiety Porphyrin '
Ring

Figure 21: Designed and synthesized porphyrin.
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Figure 22: Calculated structure of An-TPyP.
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Figure 23: Mechanism of the activity control of An-TPyP under an interaction with DNA.

Figure 24: Calculated structure of An-TPyP binding to DNA.

Experimental Demonstration

The protonated An-TPyP showed almost no fluorescence in an aqueous solution,
and the fluorescence lifetime (zr) was markedly short. It is notable, however, that, in
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the presence of DNA, the fluorescence intensity increased and the lifetime became
long. The extremely short lifetime for free An-TPyP stems from an effective
quenching of the photoexcited state by the intramolecular electron transfer from the
anthracene moiety to the porphyrin moiety to form the CT state. Owing to the
positive charge in the protonated porphyrin moiety, An-TPyP can interact with
anionic DNA. The interaction between An-TPyP and DNA was confirmed by the
change in the UV-Vis absorption spectra. The electron-accepting ability of the
porphyrin moiety should be decreased by the electrostatic interaction with anionic
DNA, as in the case of previously reported photosensitizers [71, 75]. Furthermore,
the hydrophobic environment of DNA is also unfavorable for the CT state. Thus, the
intramolecular electron transfer process was suppressed, and the z¢ of the porphyrin
ring elongated. To evaluate the 'O, generation activity of the photosensitizer, the
near-infrared emission was measured. The near-infrared emission at around 1,270
nm, which is assigned to the radiative deactivation of 10, to its ground state, was
clearly observed during the photoexcitation of An-TPyP in the presence of DNA,
whereas very weak emission was observed in the absence of DNA. The apparent
value of @¢ reached a plateau at 50 pM-bp, where all An-TPyP molecules interact
with DNA. The of @, with An-TPyP was estimated to be 0.75 and 0.52 for DNA-
binding An-TPyP cases of AT-only sequence and guanine-containing sequence,
respectively, in comparison with the 'O, emission intensity for methylene blue in
D,O (D= 0.52) [126].

Electron ,|

donor CJ
N
CH,

Py-TMPyP

Figure 25: Design and synthesis of Py-TMPyP.
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Design and Synthesis of Water-soluble Porphyrin for the Control of the
Singlet Oxygen Generation by DNA

As predicted by the computational study, the singlet excited state of An-TPyP is
effectively quenched through intramolecular electron transfer from the anthracene
moiety [124]. The interaction with DNA suppresses the intramolecular electron
transfer, resulting in the elongation of the lifetime of the photoexcited state. This
elongation enhances the intersystem crossing and makes the photoenergy transfer
to molecular oxygen possible. The activity control of porphyrinoid
photosensitizers for PDT through an interaction with DNA should provide a
possible increase in the selectivity for targeting DNA. Although An-TPyP can act
at pH 2 ~ 3, which is not a normal physiological pH, this study demonstrated the
activity control of an electron-donor connecting porphyrin by DNA. The next step
is the design of porphyrinoid photosensitizer, whose activity can be controlled
through interaction with DNA in water of physiological pH. Thus, the electron
donor-connecting porphyrin, meso-(1-pyrenyl)-tris(N-methyl-p-pyridinio)
porphyrin (Py-TMPyP, Fig. 25) [127], was designed and synthesized. The MO
calculation was performed at the Hartree-Fock 6-31G* level to predict the
photophysical property of the porphyrinoid photosensitizer. This calculation
showed that the photoexcited state of Py-TMPyP can be deactivated via
intramolecular electron transfer from the pyrene moiety to the porphyrin moiety,
forming a CT state. The interaction with DNA predicts a raise in the CT state

energy, leading to the recovery of the photochemical activity.
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Figure 26: Absorption spectra of Py-TMPyP with or witout DNA.
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Py-TMPyP

Figure 27: Calculated structure of Py-TMPyP binding to DNA.

Experimental Evaluation of the Activity of Synthesized Porphyrin

As the DNA, the synthesized 16-mer oligonucleotides (AATT:
d(AAAATTTTAAAATTTT), and AGTC: d(AAGCTTTGCAAAGCTT), were
used. The UV-Vis absorption spectrum of Py-TMPyP was red-shifted by the
addition of DNA (Fig. 26), indicating the binding interaction of Py-TMPyP into the
DNA strand. From the molecular mechanics calculation and the CPK model, Py-
TMPyP is considered to bind to the DNA major groove (Fig. 27). The fluorescence
spectra of Py-TMPyP are shown in Fig. 28. Py-TMPyP showed almost no

fluorescence in an aqueous solution. The extremely weak fluorescence for free Py-
TMPyP stems from an effective quenching of the photoexcited state by the
intramolecular electron transfer from the pyrene moiety to the porphyrin moiety to
form the CT state. Note that, in the presence of DNA, the fluorescence intensity
increased. The apparent values of @y are 0.12 and 0.10 in the presence of 50 uM-
base pair (uM-bp) AATT and AGTC, respectively. In this experimental condition,
98 and 97% of Py-TMPyP is binding with AATT and AGTC, respectively. The
electron-accepting ability of the porphyrin moiety should be decreased by the
electrostatic interaction with anionic DNA. Thus, the intramolecular electron transfer
was suppressed, resulting in the enhancement of the fluorescence becouse of the
elongation of the singlet excited state. With the GC-containing sequence of DNA,
the @y value of Py-TMPyP was slightly smaller than that of the AT-only sequence.
Since guanine has the lowest oxidation potential in the nucleobases, an electron
transfer from guanine to the photoexcited porphyrin ring possibly decreases the @
of Py-TMPyP. To evaluate the 'O, generating activity of the photosensitizer, the
near-infrared emission spectrum was measured. The typical near-infrared emission
spectrum around at 1,270 nm, which is assigned to the deactivation of 'O, to its
ground state, was clearly observed during the photoexcitation of Py-TMPyP with
DNA, whereas the emission was not observed without DNA (Fig. 29). The near-
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infrared emission was effectively diminished by sodium azide, a physical quencher
of '0,. The @, was estimated from the comparison of the emission intensity by Py-
TMPyP-DNA and that of methylene blue [126]. The apparent values of ®, by Py-
TMPyP-DNA were 0.051 and 0.038 in the presence of 50 uM-bp AATT and AGTC,
respectively. Thus, the photosensitized 'O, generation by Py-TMPyP became
possible through the interaction with DNA. Because 'O, generation occurs near
DNA, the generated 'O5 should interact with the DNA strand. AT sequences quench
'0, through mainly a physical mechanism with the rate constant of 4.1x10° M's™
[128], whereas guanine can quench 'O, through a chemical process (guanine
oxidation) with a higher rate constant (1.7x10” M's™) [129]. Therefore, the actual
quantum yield of 'O, generation may be higher than the estimated values.
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Figure 28: Fluorescence spectral change of Py-TMPyP under an interaction with DNA.
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Figure 29: Near-infrared emission of singlet oxygen generated by the photosensitized reaction of
Py-TMPyP under an interaction with DNA.
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Conclusion of the Controlled Generation of Singlet Oxygen by DNA-binding
Porphyrin Photosensitizer

In conclusion, the singlet excited states of Py-TMPyP and protonated An-TPyP
are effectively quenched through intramolecular electron transfer from the pyrene
or anthracene moieties (Figs. 23 and 30). The interaction with DNA suppresses
the intramolecular electron transfer, resulting in an increase in the fluorescence
intensity. This suppression of the electron transfer quenching enhances the
intersystem crossing and makes the photo-energy transfer to molecular oxygen
possible. The activity control of porphyrin photosensitizers for PDT through
interaction with DNA should provide a possible increase in the selectivity for
targeting DNA. This study demonstrated the activity control of 'O, generation of
a water-soluble porphyrin, Py-TMPyP, by DNA at a normal physiological pH.
Computational chemistry was important tool to design the porphyrin
photosensitizers.

Py-"TMPyP*
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Figure 30: Proposed mechanism of the activity control of Py-TMPyP under an interaction with
DNA.

STRUCTURE CALCULATION OF PHOSPHORUS(V) PORPHYRIN
DERIVATIVES

The phosphorus(V) porphyrin (P(V) porphyrin) is a strong electron acceptor by
the central cationic phosphorus atom. The derivatives of this porphyrin are used in
the photochemical reaction. The structure of the porphyrin ring is strongly
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affected by the coordination bond with the central phosphorus atom. The
computational study of this structure is useful to investigate the characteristics.
For example, the structure of dihydroxoP(V) tetraphenylporphyrin was
determined by the MO calculation at the Hartree-Fock 6-31G* level (Fig. 31).
This porphyrin photosensitized DNA damage through 'O, generation and electron
transfer [72]. This porphyrin is relatively planer, suggesting that intercalation to
the DNA strand may be possible. The binding interaction with DNA is important
for photosensitized damage because the damaging mechanisms of electron
transfer and 'O, generation are sensitive to the distance between the
photosensitizer and the nucleobase. Another example is the structure calculation
of hydroxy(1-pyrenebutoxy)P(V) tetrakis(p-butoxyphenyl)porphyrin chloride
(Fig. 32) [130]. The energy transfer to the porphyrin competes with the electron
transfer to the porphyrin in the photo-excited state of the pyrene of this porphyrin.
The donor-acceptor distance is very important for these photophysical processes.
The distance between the pyrene and porphyrin was easily predicted by the MO
calculation. Computational study is useful in photochemical study.
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Figure 31: Example of calculated structure of phosphorus(V) tetraphenyl porphyrin.

Figure 32: Structure of hydroxy(1-pyrenebutoxy)phosphorus(V) tetrakis(p-butoxyphenyl) porphyrin.
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CONCLUDING REMARKS

A relatively simple calculation of HOMO of the photosensitizer was used to
evaluate the DNA-damaging activity. Computational chemistry may be applied to
predict the risk of the phototoxicity and photo-carcinogenicity of various
compounds. On the other hand, the investigation of the photochemical reaction
can be supported by the calculation of the molecular structure and energy.
Therefore, the cost of experiments would be reduced by the use of computational
study. Furthermore, computational chemistry is an important tool for the
molecular design of drugs. In this chapter, examples for the design of a
photosensitizer for PDT were introduced. Computational chemistry can be used in
the fields of photochemistry, photobiology, and photomedicine.
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Abstract: Quantitative structure-activity relationship (QSAR) is a statistical modelling
approach that can be used in drug discovery, environmental fate modeling, property and
activity prediction of new, untested compounds. Validation has been identified as one of
the important steps for checking the robustness and reliability of QSAR models. Various
methodological aspects of validation of QSARs have been a subject of strong debate within
the academic and regulatory communities. One of the principles (Principle 4) of the
Organization for Economic Cooperation and Development (OECD) refers to the need to
establish “appropriate measures of goodness-of-fit, robustness and predictivity” for any
QSAR model. Validation strategies are recognized decisive steps to check the statistical
acceptability and applicability of the constructed models on a new set of data in order to
judge the confidence of predictions. Validation is a holistic practice that comprises
evaluation of issues such as quality of data, applicability of the model for prediction
purpose and mechanistic interpretation in addition to statistical judgment. Validation
strategies are largely dependent on various validation metrics. Viewing the importance of
QSAR validation approaches and different validation parameters in the development of
successful and acceptable QSAR models, we herein focus to have an overview of different
traditional as well as relatively new validation metrics used to judge the quality of the
regression as well as classification based QSAR models.

Keywords: Applicability domain, OECD, QSAR, randomization, validation,
virtual screening.

INTRODUCTION

Quantitative structure-activity relationships (QSARs) have a significant role in
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drug design, property prediction and environmental fate modeling of chemicals
and pharmaceuticals [1-3]. Predictive QSAR models are also used by different
regulatory agencies to assess physical, chemical, and biological properties of
chemicals using applications precise for decision-making frameworks in chemical
safety assessment [4]. In a broad perspective, QSAR models may be divided into
two major categories, regression-based QSAR models and classification-based
QSAR models. Another key application of a statistically important QSAR model
is the development of focused libraries based on the features of 3D-
pharmacophores and the attributes appearing in the QSAR models followed by
subsequent virtual screening of libraries in search of compounds with enhanced
potency [5]. New chemical entities with superior potency can also be obtained
from application of the lead optimization technique using knowledge derived
from QSAR models.

The most important purpose of QSAR modeling is to predict the
activity/property/toxicity of new chemical entity (NCE) falling within the domain
of applicability of the developed models. To check reliability of the QSAR
models for their predictions is an important aspect for the applicability of the
models and therein arises the importance of the validation process [6]. Validation
has been recognized as one of the backbone steps for QSAR model development.
Validation of QSAR models plays a vital step in the identification of predictive
and robust models which may be utilized for future screening of new and/or
untested molecules. This crucial step was ignored for a long time and the
techniques of identification of statistical robustness of the model were only
practised. However, only recently, a huge number of researches have been
conducted for to the design of NCE with the exploitation of QSAR techniques
where validation of the models has been considered as the most noteworthy step
[7] for reviewing the quality of the input data as well as applicability and
mechanistic interpretability of the constructed models. Various methodological
aspects of validation of QSARs have been the subject of strong debate within the
academic and regulatory communities. The following questions are often asked
before successful validation and subsequent application of a QSAR model: 1)
which of the validation principles should be followed to judge the quality as well
as predictive power of the QSAR model?, 2) what are the major criteria for
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establishing scientific validity of a QSAR model?, 3) how to use QSAR models
for regulatory purposes?; and 4) is it possible to use any QSAR model for any
given set of new untested chemicals?

The Organization for Economic Cooperation and Development (OECD) [8] has
suggested five principles that should be followed to establish the scientific
validity of a QSAR, thereby facilitating its acceptance for regulatory purposes.
One of these principles (Principle 4) refers to the need to establish “appropriate
measures of goodness-of-fit, robustness and predictivity” for any QSAR model. It
identifies the need of the internal validation (as represented by goodness-of-fit and
robustness) as well as the external validation of the QSAR model (predictivity).
Validation strategies are recognized as the decisive steps to check the
acceptability of the constructed models for their probable use on a new set of data,
in order to judge the confidence of predictions. Basically, four strategies are
adopted for validation of QSAR models [9]: 1) internal or cross-validation; ii)
division of the parent data set into training and test compounds; iii) application of
the model on a (true) external data from a different source (true external
validation); and iv) data randomization or Y-scrambling. The last method
(randomization) can be regarded as a type of internal validation.

Validation strategies are largely dependent on various validation metrics. The
statistical quality of the regression based and classification based QSAR models can
be examined by different statistical metrics developed over the years [10]. Like
various validation metrics, another important validation criterion is to check the
chance correlation of the QSAR model by Y-randomization test. The randomization
test is executed in order to guarantee the robustness of the QSAR model. The
necessity to identify an applicability domain [11] (OECD Principle 3) arises due to
the fact that QSARs are inescapably connected with restrictions in terms of the
variation of chemical structures, properties and mechanisms of action for which the
models can generate trustworthy predictions. The developed model can predict a
new compound reliably only if the new compound lies in the applicability domain of
the model. It is extremely useful that the QSAR model user has information about
the applicability domain of the developed model to identify interpolation (true
prediction) or extrapolation (less reliable prediction). Steps for development of
reliable and acceptable QSAR model are demonstrated in Fig. 1.
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I Dataset selection: Defined endpoint I—EDE CD PRINCIPLE 1
¥
| Molecular structure: Representation followed by conformational analysis and alignment I
¥
| Descriptors generation: Encoding structural features of compuunds_]

Training and test set division: a) &-means clustering and Kennard-stone, b) Principle

A 4

component analysis, ¢) Kohonens self-organisingmap (SOM), d) D-optimal design. | —med QECD
€) Sphere exclusion. f) Sorted response. g) Randomly PRINCIPLE
2
| Trainingse ]
I Chemometric tools for model generation ] > External model validation:
Y W - ) Resultant model to predict the test set | L
Regression Classification Machine
based QSAR based QSAR learning
y
. y— OECD
Internal validation parameters are checked External validation parameters are PRINCIPLE 4
and Y-randomization is performed checked :
3
\r
oD {  Whether the model is satisfactory? |
Erroneous | C_NO Applicability domain: Reliability of predicted results OECD
prediction a) Leverage, b)DModX, ¢) Euclidean approaches PRINCIPLE 3

- - - - OQECD

| Interpretation: Identification of major structural attributes PRINCIPLE 5
Y

| Lead/Hit hopping: Prediction as well as design of new series of untested compounds I

Figure 1: Steps for development of a reliable and acceptable QSAR model.

Viewing the importance of QSAR validation approaches and different validation
parameters in the development of successful and acceptable QSAR models, we
herein focus in overviewing of different traditional as well as relatively new
validation metrics used to judge the quality of the QSAR models. This book
chapter will help QSAR learners to have a bird’s eye view on different available
validation metrics useful for evaluating predictive quality of models.

IMPORTANCE OF VALIDATION OF A QSAR MODEL

With the advancement of cheminformatics, it is now possible to compute a large
number of descriptors using various software tools [12]. Moreover, using various
optimization procedures, it is now possible to obtain models that can fit well the
experimental data but there may be a significant risk of overfitting. Fitting of data
does not in any way confirm the prediction ability of a model. This is the main
reason behind the requirement of validation of the developed models in terms of
predictivity and robustness. A QSAR model is fundamentally judged in provisions
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of its predictivity, representing how well it is capable to predict compounds which
are not employed to develop the model. QSAR models that have been
appropriately validated internally and externally can be considered trustworthy for
both researchers and regulatory bodies [13, 14]. The meeting organized by QSAR
experts formulated a set of guiding principles for the validation of QSAR models
in Setubal, Portugal in March 2002 [15]. The five guidelines adopted by the
OECD [16] denoting validity of QSAR model are as follows: “(i) a defined
endpoint, (ii) an unambiguous algorithm, (iii) a defined domain of applicability,
(iv) appropriate measures of goodness-offit, robustness and predictivity and (v)
a mechanistic interpretation, if possible”. The mentioned guidelines are now
considered as OECD Principles for the validation of QSAR models. The OECD
has also offered a checklist to provide direction on the interpretation of the
principles [17]. Thus, the existing challenge in the development of a QSAR model
is not only make statistically sound and robust model to predict the activity within
the domain of applicability constructed by the training set, but in developing a
model with the ability to accurately predict the activity of untested chemicals [18].

Validation Strategies

The quality parameters quantify the fitness of a QSAR model as well as its
robustness and predictive capabilities on a pure statistical basis. Apart from the
use of the fitness parameters, validation of QSAR models consists of three
strategies [9]: (i) internal validation utilizing the training set compounds, (ii)
external validation employing the test set compounds, and (iii) true external
validation by means of an external dataset from a different source. For evaluating
the predictive ability of the developed models, both the internal and external
validation methods have been considered by different groups of researchers.
Randomization or Y-scrambling implemented on the data matrix provides a
valuable technique for evaluating the existence of any chance correlation in the
QSAR model. Along with these validation techniques, determination of the
applicability domain of the model and selection of outliers are other vital aspects
in the course of developing a reliable QSAR model with the spirit of OECD
principles. As different metrics are used for regression based and classification
based QSAR models, we have explained them in two different sections for the
better understanding of the readers. The mathematical expressions of different
validation metrics are summarized in Table 1.
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Table 1: Mathematical definitions of various statistical validation metrics for the classification and regression based QSAR models

Metrics Defining Statistical Quality of the Regression Based Models

SL. Mathematical definition
No.
, > (Y =Y. ) Goodness-of-fit
1 R =1- ﬁ and qualiljy
z( obs lmining) measures
5 RZ_{(H—I)XRZ}—p
‘ n—p-1
2
RMSE _ Z (Yobs(training) - Yca/c(lmining))
. =
3 ntraining
2
RMSE — \/Z (Yubs(te.s't) - Ypred(test))
! Mg
4 ntraining
p
2
QZ (QZ ) _ 1 _ Z (Yobs(training) - Ypred(training)) Internal
5 roo) = z (Y Y i )2 parameters
obs(training) raining for
cp2 _ 2 2 robustness
6 Rp - Rnon—random x \/(Rnon—random - Rrandom) Checking
2 External
7 Q(ZFI) — 1 _ z (Yubs(test) Ypred(test) )2 predictivity
z (Yabs(,m) =Y training ) parameters/
2
2 _ 1 Z(Yobs(test) - Ypred(test) )
8 Oiray =1~ —
Z(Y;}bs(test) - Ytest)
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2
5 [Z(Yobs(fext) - Ypred (test) ) :| / ntest
9 Q(Fz) =1- _ 2
|:Z(Yabx(train) - thi”) j|/ntmin
. 2Z(xi_'x)(yi_y)
10 CCC=p, =— S—
Z(‘xi _x)z +Z(yi _y)z +n(x—y)
i=1 i=1
Golbraikh and Tropsha criteria for external validation:
1) inaining > 05 ’
i) R 506
P22
11 iii) - 0 ~0.1and 0.85<k <1.15 or
r
I"2 _ er
— 0 ~0.1and 0.85<k'<1.15.
r
W) | =1 <03
o’ metric Scaled r,’ metrics
> 5 2 5 2 2 for internal,
Vm :(Vm +l"m )/2 and Af‘m :‘Fm =7, ‘, external and
overall predictivity
where r’i = rz X(l— “»2 _roz)
12 P =1 x (=7 =759)
The parameters # and r’ are defined as follows:
2 , 2
2_1 Z(Yobs_kxypred) & "7 _ Z(Ypred_k XYobs)
7y =1- — ryo=1- — ]
Z(Yabs - Y"h‘y) Z (Ypred - Ypred )
The terms & and &~ are defined as:
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Z(Yubs XYpred) & k, _ Z(Yob: XY:ured)

2 2
Y (7,) > (1)
The Y, and Y., values have been scaled at the beginning using the following formula:

Y.

i~ L min (obs)

Y

min (obs)

Yi(scaled) = Y

max (obs) -

2 2 2 2
13 ¥, (rank) =T (rank) X (1 AT Gank) — 1 (rank))

Metrics defining statistical quality of the classification based QSAR models

SIL. Mathematical definition
No.
A—d W, Goodness-of-fit
14 =det ;
B, +W, and quality
measures
A,
15 R, = -
1+ 4,
t 2
5 y oy Uh)
2/ 2
s’ /o,
17 F = '2/ -
S5 / 0,
T -1
18 dMahalunobis(xi’xj):\/(xi_xj) z (xi_xj)
n._ ..
19 p — training
p
P Internal and
20 Sensitivity = ————— external validation
TP+FN metrics
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11—

2
eV

. IN and
2! Specificity = TN + FP parameters
TP+TN for ROC analysis
22 Accuracy =
TP+ FN +1TN + FP
23 Precision = _IP
TP + FP
2
24 F -measure =
1/ Precision + 1/ Sensitivity
_ (TPxTN)—(FPx FN)
23 J(TP+ FP)x(TP+ FN)x(TN + FP) x(TN + FN)
26 G-means = \/ Sensitivity x Specificity
Cohen's k = 7})’ (@=F )
1-P(e)
TP+TN
27 P (a) = ——— L TN)
(TP+ FP+FN+TN)
Pe)= {(TP+ FP)x (TP + FN)} +{(IN + FP)x (TN + FN)}
o= (TP +FN + FP+TN)?
2 |
28 AUC-ROC=1-— 7 ¥
nx(N-n) 2x(N-n)
1 n o
2N e
v
RIE=—Z=——
29
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%Sinh(%) L1
cosh(®3)-cosh @3- | 1)

30 BEDROC = RIE x

1 r—1i

31 AUC-pROC=-—x>» lo -
P " ; 1o (N ~ n)
32 ROCED = ( dtraining - dtart + 1) X (dtmining + dtext ) X (dtavt + 1)
1-4 -p-1

(n+p)xA

34 rocrir = ROCED
FIT(2)
35 E _ % of toxic Metrics for PDD
N (% of non - toxic +100) analysis

. % of non - toxic
non—toxicity (% Of toxic + 100)

“Each notation is mentioned in the text.

In Table 2, we have demonstrated how one can easily calculate different metrics from a regression based QSAR
model. In Table 3, the methods of computation of different validation metrics for a classification based QSAR
model are demonstrated.
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Table 2: A simple example demonstrating calculation of different validation metrics from a regression based QSAR model*

Model
equation Y =5.16-0.159xX;-1.44%xX,
(MLR) Nitraining = 11, Niest = 6
Training set
ComI[l))ound Y (Observed) X, X, Y(C;ic‘:ll;t;%LOO (Y obs(train) -Y calc(train))2 (Yabs(train) — Y vaining )2 (Yo[)x(rmin) Y Lo()fpred(lmin))z
1 3.45 1.65 1 3.46/3.44 0.000 0.624 0.000
3 3.14 1.63 | 1.5 2.74/3.59 0.159 0.230 0.201
5 2.82 202 |15 2.68/3.01 0.020 0.026 0.035
7 2.64 205 |15 2.67/2.60 0.001 0.000 0.001
9 2.29 1.83 | 1.5 2.711.82 0.176 0.137 0.218
10 22 1.9 2 1.98/2.56 0.049 0.212 0.132
11 2.15 1.33 2 2.07/2.29 0.007 0.260 0.019
13 1.74 1.54 2 2.04/1.35 0.087 0.846 0.153
15 3.45 1.91 1 3.42/3.51 0.001 0.624 0.003
16 2.51 1.66 | 1.5 2.74/2.27 0.051 0.023 0.060
17 2.87 1.1 1.5 2.83/2.98 0.002 0.044 0.012
Y training = Z(Yob.s(rrain) _Ycalc(train))z Z (Yobs(train) =Y raining )2 Z(bis(tmin) -Y LOO—prﬁd(!min))z
2.66 =0.553 =3.026 =0.834
Test set
COmlll))mmd Y (Observed) X, | Xy Y (Predicted) (Yobs(fesf) _Yprfd(fesf))z (Yobs(test) =Y vraining )2 (Yobx(text) ~Yiew) ’
2 32 1.9 1 3.42 0.047 0.292 0.144
4 2.87 122 | 1.5 2.81 0.004 0.044 0.003
6 2.81 1.78 | 1.5 2.72 0.009 0.023 0.000
8 2.49 1.61 |15 2.74 0.065 0.029 0.109
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12 2.01 196 | 2 1.97 0.002 0.423 0.656
14 3.51 1.88 1 3.42 0.008 0.722 0.476
_ Z (Yabs(teg) _Ypml(resr))z = z (Y{)hl\,(mt) - ?lrummg )2 Z (Y _ ? )2
Ytest =2.82 0.134 =1.532 obstiest) — 1) = ] 388

Calculation of metrics

S 5= \/z( obs (ul(iuum)) 0.553

=0.26
n—p-1 11-2-1
2
Rz — Z( obﬁ(tmm) Lalt(lldlll)) 1 0.553 _ 0.817
> Y pyamy = ¥ aining )’ 3.026
-)R* - 11-1)x0.817-2
R/ g2=DR —p (=D~ =0.771
n—p-1 11-2-1
RMSEc RMSE _ \/Z ( obs(training) - Ycalc(lraining) )2 =: \/0553 — 0224
¢ nn-ummg 11

RMSEp RMSEP — \/Z ( obs(test) Pred(/esz)) 0. 1634 —0.177
n

test

— 1 Z( obs(train) pred(tmm)) 1 0834

@ o’ =0.632
z( obs(train) Y”"”’””&’) 3.026
_Y ed (test .
Rzprcd Rzpred — 1 _ Z( obs(test) jnd( X ))2 _ 1 _ O 134 _ 0912
z( obs(test) thim'ng) 1532
QZ(FZ) Q2(F2) =1- Z( obs(test) pud(lest)) —1- 0.134 ~0.903
z( obs(test) YIGS’) 1.388
0.13
2 QZ(FB) —-1- [Z( obs(test) pied(te:t)) ]/n _ / 0919
Q B [Z( obs(train) Ytrain) ]/nn, 3 02/

Y is the response variable; X; and X, are the descriptors involved in the QSAR model
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Table 3: A simple example demonstrating calculation of different validation metrics from a classification based QSAR model*

Classification Posterior Predicted classification
Y threshold based on Y (Observed): Probabilities threshold based on PP:
Compound ID (Observed) (L=<3.69<H) (PP) (L<0.50<H)
Training set compounds
1 4.17 H 0.94 H
3 4.11 H 0.95 H
4 3.58 L 0.97 H
8 3.82 H 0.63 H
9 3.63 L 0.11 L
10 3.89 H 0.87 H
11 3.82 H 0.81 H
12 3.55 L 0.10 L
13 3.98 H 0.83 H
14 3.5 L 0.01 L
15 3.78 H 0.87 H
16 4.44 H 0.78 H
17 3.36 L 0.01 L
18 391 H 0.97 H
20 3.69 L 0.88 H
22 3.55 L 0.60 H
23 3.64 L 0.01 L
25 3.94 H 0.63 H
26 3.94 H 0.94 H
29 2.77 L 0.02 L
30 241 L 0.00 L
31 3.38 L 0.10 L
33 3.29 L 0.01 L
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34 4.24 H 0.98 H
35 4.1 H 0.99 H
Test set compounds
2 4.08 H 0.60 H
5 3.51 L 0.06 L
6 3.83 H 0.53 H
7 3.59 L 0.94 H
19 3.93 H 0.87 H
21 3.63 L 0.98 H
24 4.03 H 0.88 H
27 3.36 L 0.00 L
28 3.95 H 0.49 L
32 3.23 L 0.00 L
Training set Test set
Confusion matrix P Confusion matrix P N
Classification metrics P 13 P 1
N 3 N 2 3

TP + FN

— 13 4
FN !
FP 2
TN &
e o
St € (335 ) - SR
Sensitivity = '
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Specificity (%)
peaidtty 1) (993)*1%:75 (332j*100=60
Specificity = ———— + *
peciicity = o TP
Precision (%) ( 13 j* ( 4 j
— |*100=281.25 —— [*100 = 66.67
Precision:7TP 13+3 4+2
TP+ FP
Accuracy (%) 1
TP+ TN [3+9 j*100=88 _ 4% hej00=70
Accuracy =——— "2t 13+0+3+9 4+1+2+3
TP+ FN+1TN + FP

F-measure (%)
2
1/ Precision +1/Sensitivity

F - measure =

2 1%100=89.66
[%.81*%]

2

1 1
[%.667* 0.80

}‘100 =72.72

G-means

G-means = \/ Sensitivity x Specificity

(1x0.75) = 0.87

0.93x0.89)=0.69

Cohen's e R@=( B )0 P@=( A2 _)-om
P (a)= (TP+TN) 1343+0+9 4+2+1+3
! (TP+FP+FN+1TN)
g+ 0+ s om0 Pr(e):<(13+3)><(13+0)>+<(9+23)><(9+0)> Pr(e):<(4+2)><(4+1)>+<(3+22)><(3+l)>
= (TP+FN + FP+TNY’ (13+0+3+9) (4+1+2+3)
Cohen's = BE@=E(©) =0.5056 =0.50
onen's = —
1=-F(e) Cohen's & = 0.88-0.5056 _ Cohen's k = 082120179 _ 0.40
1-0.5056 1-0.179
MCC
Mce— (TPXTN)—(FPx FN) (13 X 9)_ (3 X O) =0.781 (4 X 3)_ (2 X 1) =041
~ JTP+FP)x(TP+ FN)x(TN+ FP)x(TN + FN) \/(13+3)><(13+0)><(9+3)><(9+0) \/(4+2)><(4+1)><(3+2)><(3+1)

*Y is the response variable
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VALIDATION METRICS FOR REGRESSION BASED QSAR
MODELS

MEASUREMENTS OF QUALITY OF QSAR MODELS

A QSAR model is required to be checked for various quality measures before it
can be applied for screening of new chemical entities. For assessing the quality of
a QSAR model, various statistical parameters can be used. The acceptability of a
regression based QSAR model relies upon different statistical parameters [10]
such as (i) standard error of estimate (s), (ii) determination coefficient (R’) and
(iii) explained variance (R,’). The error in the inference of individual activity
values of the molecules under study utilizing the regression method can be
quantified based on their residual data. The standard error of estimate (SEE or s)
is calculated from the square root of sum of squares of the residuals divided by the
degree of freedom. The standard error of the estimate is a measure of the precision
of fitting. Lower values of SEE correspond to improved model fitting.

JZ( 0

n-— p—l

In Eq. 1, Yors and Y, are the observed (experimental) and estimated scores
respectively, while n is the number of compounds and p is the number of
descriptors (it should not be confused with the probability ‘p’ value denoting the
level of significance).

The determination coefficient R’ [10] measures the variation of the observed or
experimental data with the predicted ones. Errors either in the data or in the model
will lead to a bad fit. The maximum possible value for R* is 1, which defines a
perfect correlation. R* is calculated from the following equation:

2
Z( obs(train) calc(tram))
Z ( obs(train) Ytralmng )

(2)

Here, Y wraining 18 the mean observed activity of the training set compounds.
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Another parameter used for testing the quality of developed regression equation is
adjusted R* (R))) [10]. R.’ (Eq. 3) is calculated to overcome the drawbacks
associated with the increasing value of R* with an increase in number of variables.
The explained variance of a model can be adjusted in the form of the modified R’
as shown below.

_(n=DR*—p
n—p-1

R/ (3)

VIF

The descriptors in a multiple linear regression (MLR) equation should show
minimum intercorrelation. Variance inflation factor (VIF) [19] of predictor
variables should be checked for MLR models in order to check the presence of
multicollinearity along with the model performance. VIF can be calculated from
the following equation:

1
1- R} @)

i

VIF =

where, R;® the unadjusted R* when one regresses X; against the remaining
descriptive variables of the model. Multicollinearity is considered as very high
when VIF value is greater than 5.

F-Ratio

The F ratio is used in order to quantify the statistical importance of the regression
model. A higher value of F implies that a more significant correlation has been
achieved. It is defined in the following Eq. 5 [10]:

Z Ycalc_? :
elA
(Yobs - Ycalc )2 )
> /—p—l)
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where, Y, is the observed response, Y., is the calculated response, n defines the
total number of compounds and predictor variables is denoted as p.

FIT Kubinyi Function

The correlation coefficient R is clearly not the ultimate criterion because it tends
to choose as many variables as possible. The standard error s value also tries to
include too many variables, and the F' value occasionally selects less number of
variables than that frequently accepted by a QSAR researcher as large F values
are often achieved by including only one or two variables in the model. The FIT
Kubinyi function is closely connected to the F value [20].

R (n-p-1)
(n+p2)(11)—R2) ©)

In Eq. (6), n defines the number of training set compounds and p denotes the
number of generated variables in the model.

FIT =

Akaike’s Information Criteria (A1C)

The goodness of fit and the number of variables that has to be estimated to attain
that degree of fit are considered by Akaike’s information criteria (AIC). AIC is
calculated using the following equation:

(n+7)
n—p )

where, RSS is the sum of squared differences between the observed and estimated
response; n defines the number of training set compounds; and p” denotes the
number of adjustable variables (the best possible combination of predictor
variables for the model) in the model [21]. When comparing a number of models,
the model that creates the least value of this statistic should be identified as the
most useful one. However, it may be noted that AIC can be employed to evaluate
classification based QSAR models also if the RSS parameter in eq. 7 is
substituted by any error estimation metric, i.e._classification error.
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Additional metrics need to be employed to judge the predictive ability of the
QSAR models as acceptable values of these statistical parameters only are not
always adequate. To optimally determine the predictability of the models, they are
required to be further assessed utilizing diverse validation metrics. Thus, internal
and external validation experiments are performed in order to check the
predictability the models.

INTERNAL VALIDATION

Internal validation of a QSAR model is done employing the molecules present in
the training set [22-23]. It involves activity prediction of the training set
molecules followed by a check of the precision of predictions. The cross-
validation approach involves the leave-group-out cross-validation (LGO-CV)
method where a set of n number of observations is divided into calibration and
validation subsets. The calibration subset is used to develop the model, while the
validation set is used to test the predictability of the model for the new data which
are not used in the calibration. The method comprises two commonly used
techniques namely, leave-one-out and leave-many-out cross-validation
techniques.

Leave-One-Out (LOO) Cross-Validation

The training data set is initially modified by eliminating one compound from the
set for LOO cross-validation. The QSAR model is then constructed based on the
remaining molecules of the training set and the activity of the omitted compound
is computed based on the resulting QSAR equation. This process is repeated until
all the molecules of the training set have been deleted once, and the predicted
activity data are obtained for all the training set compounds. The model
predictivity is evaluated using the predicted residual sum of squares (PRESS) and
cross-validated R’ (QZ) [24, 25] for the model. PRESS is a sum of squared
differences between experimental and predicted data while the value of standard
deviation of error of prediction (SDEP) [8, 26, 27] is calculated from PRESS.
Eqns. 8, 9 and 10 give the expressions for PRESS, SDEP and O respectively.

PRESS = Z(XJ})S - Ypred )2 (8)
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SDEP = PRfSS )
Q2 —1- Z ()fobs(train) - Ypred(train))2 1o PRESS (10)
Z (Yobs(train) =Y waining ) ’ Z (Yobs(tram) — Y vraining )2

In Eq. 8, Yous and Ypreq correspond to the observed and LOO predicted activity
values while in Eq. 9, n refers to the number of observations. In Eq. 10, Y,ssrain) 18
the observed activity, Yjrequrain) 1S the predicted activity of the training set
molecules based on the LOO technique. The accepted threshold value of Q* is 0.5.

It is interesting to point out that only a higher value of Q° is an inadequate
criterion to assess the predictive potential of a QSAR model. Structural
redundancy of the training set may be a cause for overestimation of the value of
Q? [28]. The models developed may suffer from the problem of overfitting. Thus,
despite bearing a significant correlation between the descriptors and response
parameter, the developed model may fail to predict correctly the activity of new
compounds. So, LOO-Q? can serve only as a crude criterion to judge the quality
and robustness of a model while external validation plays a key role in detecting
the ability of the model to predict the new set of molecules.

Leave-Many-Out (LMO) Cross-Validation

The basic principle of the leave-many-out technique (LMO) method is that a
specific section (1 <M < N where N is a sample size) of the training compounds
is held out and omitted in each cycle [29]. For each cycle, the model is
constructed employing the reduced dataset and the deleted compounds are
predicted utilizing the developed model. After completion of all cycles, the
predicted activity values of the compounds are considered for the calculation of
the LMO-Q”. Based on the predicted values of the deleted compounds in each of
the cycles, predictive R> may be calculated for each cycle. Thus, within the
process of internal validation, the LMO technique gives to some extent a flavour
of external validation. The major steps for LOO and LMO cross-validation are
presented in Fig. 2.
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| Dataset consists of N compounds |
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Figure 2: Major steps for the calculation of LOO and LMO cross-validation metrics.

Hou Fitness Function

Hou fitness function [30, 31] is defined as the metric (Eq. 11) which unites a
multiple correlation coefficient R and the leave-one-out Q (QLoo).

R, =R0O, 0, (11)

The acceptability of a model is tested with the leave-one-out cross-validated
correlation coefficient (Q), which can be defined as:

O*= (SSY-PRESS)/SSY (12)

where, SSY is the sum of the squared deviations of the dependent variable values
from their mean, PRESS is the predicted sum of squares obtained from the leave-
one-out cross-validation method.

True Qz

The process of selection of the training and test sets may be prejudiced in many
cases though external validation is largely accepted by various research groups.
Moreover, the division of a dataset may result in loss of information (for the test
set) which otherwise could have been used for developing the QSAR model.
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Thus, according to Hawkins et al. [32], holding out a part of the dataset is useless
in case of a small dataset. Again in case of cross-validation, the model is
constructed using the training set where the separation is done internally. It is
critical that each compound should be removed for prediction so that it is not used
in any way in the model fitting applied to the remaining retained n-1 compounds.
The activity of the deleted compound is then predicted using the developed
equation employing retained n-1 compounds. Thus, Hawkins et al. proposed the
concept of “true Q*”
selection strategy at each validation cycle. In case of small data sets, compared to
the traditional approach of the splitting of the data set into training and test sets,

parameter, which can be computed employing the variable

this may be a better metric for assessment of predictability [32, 33].

Hawkins et al. [32] arrived at the conclusion that (1) if one has 100 compounds
available in a particular dataset, then he can use all compounds for calibration
with accurate and precise Q°; (2) if the dataset consists of 120 compounds,
splitting the set into 100 for training set and 20 for test set is not a worthy one as
the information in the test compounds is far substandard to what one gets from the
training set’s Q°; (3) if one has 150 compounds, one can use 100 for training set
and the remaining ones for test set; the test set will give an approximation of R*
moderately equivalent with the O°.

rw’ Metric for Internal Validation

The mean response value of the training set molecules and the distance of the
mean from the response values of the each compound plays a critical role in
computing the Q* value. The Q? value increases with an increase of the value of
the denominator (Z(Yobs(tmm) —thim.ng)2 ) in the right hand side of the equation
10. Thus, even for great disparity in the predicted and observed response values,
satisfactory Q values may be obtained if the molecules exhibit a considerably
broad range of response data. Hence, an acceptable Q° does not guarantee that the
predicted activity values lie in close proximity to the observed ones although there
may exist a good overall correlation between the values. Thus, to prevent this
error and to better point out the model predictability, the r,’ metrics (Egs. 13 and
14) for internal validation, introduced by Roy and co-workers [34-36], may be
calculated.
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R 2 /2
l/;Z_(rm +rm)

;= (13)

/2
|

e (14)
Here, r,> =r> x(1-+/(r* =1,)) and r',> =r? x(1—+/(r> =#'¢*)). The parameters
¥’ and ry’ are the squared correlation coefficients between the observed and
(leave-one-out) predicted values of the compounds with and without intercept
respectively. In the initial studies, observed values were considered in y-axis
whereas predicted values were considered in the x-axis. r,° bears the same
meaning but uses the reversed axes. It is interesting to note that during the change
of axes, the value of * remain same while it is not true for the case of ro When
the observed values (y-axis) are plotted against the calculated values of the
compounds (x-axis) setting intercept to zero, the slope of the fitted line gives the
value of k. Interchange of the axes gives the value of . The following equations
are employed for the calculation of 7, r¢’, k and k.

2 Z( obs kared)

T Y@, -1, "
P 2 —EXY,) 16
> Ve =Y,0)’
k=z§z";;f;’f“ "
2 (z ZE >:Y) pzred) (18)

rj is the average value of rmz and r'm2 , and Armz is the absolute difference between
rm2 and 7/, m . In general, the difference between rm and 7, values of the training

set should be null for better models. rm ooy and Ary,’ ooy parameters can be
used for the internal validation of the training set and it has been shown that the
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value of 4r,’ 100y should be less than 0.2 provided that the value of rmz(mm is

more than 0.5. In Fig. 3 we have tried to demonstrate the major steps for the
calculation of rm2 metrics.

l Development of a QSAR model |
I

Computation of activity of the compounds from the model
¥
Training set: Leave-one-out predicted activity values
Test set: Predicted activity values
Overall set: Predicted activity for both training and test set compounds

4

Observed and predicted activity values Observed and predicted activity values
areconsidered in the in yv-axis and x axis are considered in the in x-axis and y-axis
respectively respectively

A 4

— - ¥
The metrics  and r,* are the squared

correlation coefficients between the In this case, the value of /¥ remain same
observed and predicted values with and while it is not true for the case of r/°

without intercept
& A 4
r2 = (-0 -r) rw =1 x(1=(r? -r'c®))
7 (O +r'm) 2 2 2
Fo === afid & SR, T |

Figure 3: Major steps for the calculation of ,,” metrics.

2
True ru” o0)

True 7,° ooy 1s calculated from the model developed utilizing the undivided data
set employing the variable selection stratagy at each cycle of validation. External
validation characteristics are truly reflected by the ‘true rmZ(Loo)’ for the QSAR
model as reported by Mitra et al. [37]. In case of small datasets, the predictability
and accuracy of predictions can be efficiently judged employing this metric.

EXTERNAL VALIDATION

Although internal validation is the most accepted approach for validation of a
QSAR model, but it is not the ultimate approach to judge the predictive power of
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a QSAR model for NCE [13]. The true predictive ability of the model is judged

based on the values of predictive R* (R’,.q) and r,’ metrics rmz(test) and

sz(ovem,,) from test set predictions.

Predictive R” (R%prca)

The first step of external validation is splitting of the entire dataset into training
and test sets. The choice and number of compounds in the training and test sets
are the principal conditions for development of a statistically noteworthy QSAR
model [33]. The QSAR models are constructed based on the training set
compounds, and the activity of the test set molecules is predicted utilizing the
developed model. Thus, the metric RZ,W; [13] (Eq. 19) replicates the measure of
correlation between the observed and predicted data.

2
_1_ Z(Yobs(test) - Ypred(test))

2
R pred _1 Y ? ~ >
Z ( obs(test) ~ * training )

(19)

Here, Yobsgesy and Ypreapesy signify the observed and predicted response data for the
test set molecules, while Y ,ume denotes the mean observed activity of the
training set compounds. The stipulated threshold value of Rzpred is 0.5 for
acceptability of any QSAR model.

Validation Based on Golbraikh and Tropsha’s Criteria

In case of least squares, the experimental versus fitted and the fitted versus
experimental plots are not always equivalent [38]. According to Golbraikh and
Tropsha [13], regressions of y against y/ or y/ against y through the origin, should
be characterized by either k or k' (slopes of the corresponding regression lines)
being close to 1. Consequently, the regression lines through origin are defined by
y" =ky'and y"” =k'y while the slopes k and k' are given by Eqs. (20) and (21)
respectively.

k= Zyiyi (20)

Zy'/Z
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/
k/ :zyiyi (21)
Zyiz

Golbraikh and Tropsha proposed more strict conditions for a QSAR model in

order to ensure high predictability. They suggested that either of the squared
correlation coefficients of these two regression lines (y against y or y against y
through the origin) ro® or r'y® (given by Eqgs. 22 and 23) respectively should be
close to the value of r* for the developed model. The values of r* and ro° specify
the squared correlation coefficients between the observed and the predicted values
with and without intercept respectively while r'y® represents the same information
as ro” does but with inverted axes.

a2 ey )
2 = N
D=y
/2 _ Z(yi _y/iro)z
ry =1- =
> -y

In Egs. (22) and (23), )7 and y signify the mean values of the predicted and
observed data, respectively. Therefore, according to Golbraikh and Tropsha [13],

(23)

acceptable QSAR models should maintain the following conditions:

iy O  >0.5.

training
. 2
i1) Rtest >0.6.
2 2
r—-n
7/'2
r2 _ rOIZ

2
r

1i1) <0.1 and 0.85<k<1.15 or

<0.1 and 0.85<k’'<1.15.

iv) ‘roz -7?1<03.

rmz(test) for External Validation

As shown by the expression of Rzpred, similar to Qz, the value of Rzpred relies on
the average activity value of the training set molecules. Thus, high values of Rzpred
may be obtained when the test set molecules bear a wide range of activity data;
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but this may not signify that the predicted values are very near to the
corresponding observed data. In order to find out the propinquity between the
observed and predicted activity data for the test set compounds, the metric rmz (test)
[35], parallel to rmz(wo) employed in internal validation, has been introduced. The
rmz(,esl) is calculated utilizing the squared correlation coefficients between the
predicted and observed values of the test set molecules. As suggested by Roy et

al., the value of V,f(test) should be more than 0.5 provided that the value of
A7 esy is lower than 0.2 [35].

It is interesting to point out that, the r,,° metrics are not limited to the training and
test set only. Roy and coworkers [35] showed that it can be extended to the entire
dataset employing the LOO predicted data for the training set and predicted data

. 2
for the test set molecules. The metrics have been defined as 7, gy and

Armz(ovemy) which reflect the predictability of the model for the entire dataset. The
major advantages of this parameter include among other things: (i) unlike external
validation, the rmz((,vemll) metric includes both training and test set molecules and
thus the statistic is based on prediction of comparably large number of compounds
which imparts greater reliability to the model; (ii) when many equivalent models
are obtained, where few models explain superior reliability in terms of the internal
validation metrics while others may demonstrate better external validation

_ . . : 2
statistics, choice of the best model becomes complicated. Since 7, pewy and

Arm2 (veral) are based on the entire dataset, the values of these parameters enable
selection of the best model based on an overall contribution of both internal and
external validation measures. The 7, statistics have been discussed by Roy and
coworkers [34-37, 39-50] in many reports. The parameter r,,° has also been used
by various other groups of authors [51-59] to verify the robustness and
predictability of QSAR models.

ADDITIONAL FUNCTIONS FOR MODEL PREDICTIVE ABILITY RMSEP

External predictability of a QSAR model may further be calculated by an
assessment of the observed activity and the predictions of the test set molecules
through calculation of a metric referred to as root mean square error in prediction
(rmsep) [60] given by Eq. 24.

2
z (yobs(test) - ypred(text))

ext

RMSEP = \/ (24)
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Here, n.y signifies the number of test set compounds. The parameter depends
exclusively on the divergence between the predicted and observed activity values
and can also be calculated when there is only single test compound is present.

2
O (r2)

Schiitirmann et al. [61] proposed an additional metric for computation of external
Q2 i.e., Q* based on prediction of test set compounds (Qz(Fz)) as given by Eq. 25.

2
_ z (Yabs(tesl) - Ypred(test))

Q2<F2> =1 =
Z(Y;bs(tes;) - Ytest)2

(25)

Here, Yest signifies the mean observed activity of the test set compounds. In case
of QZ(FQ), the mean activity value used in the denominator represents external set
compounds. Almost equal or close values of O’ 2 and o’ 1) infer that the
training set mean lies in the close propinquity to that of the test set which
indicates that the test set utilized for modeling covers the whole response domain
of the model. The threshold value 0.5 is defined for this parameter.

Qz (F3)

Another parameter (Q* 3) with a threshold value of 0.5) for validation of a QSAR
model has been proposed by Consonni et al. [60]. This metric can be computed by
the following equation:

2
_ [z (}Iobs(test) - Ypred(test)) ] / next

QZ(FB) =1 = >
[Z (Yobs(train) - Ytrain) ]/ntr

(26)

In Eq. 26, n, and n,,, denote the number of training set and test set compounds,
respectively. However, although QZ(F3) measures the model predictability, it is
sensitive to selection of training data set and tends to penalize models fitted to a
very homogeneous dataset even if predictions are close to the truth [60-62].

Concordance Correlation Coefficient (CCC)

The CCC parameter [63] can also be calculated in order to check the model
reliability by the following equation:
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n —

22 ('xabs(tesl) - ‘xobs(test) )(ypred(test) - ypred(test))
i=1

Yol i

(27)

c = n n

2 2

z (xobs(test) - xobs(test)) + Z (ypred(test) - ypred(test)) + n(xohs(test) - ypred(test))
i=1 i=1

Here, Xopsesy and Vpredgesy Tefer to the observed and predicted values of the test set,
n denotes the number of compounds, and x and ¥ ,,.q¢es SigNify the mean

obs (test)
of observed and predicted values, respectively. The CCC coefficient measures

both precision and accuracy detecting the distance of the observations from the
fitting line and the degree of deviation of the regression line from that passing
through the origin respectively. Any deviation of the regression line from the
concordance line (line passing through the origin) give a value of CCC smaller
than 1.

The rmz(rank) parameter was introduced to measure the proximity between the order
of the observed data and that of the corresponding predicted data [64]. The rmz(rank)
metric was introduced by Roy and co-workers with the intention of incorporating
the rank-order predictions of molecules. The rmz(rank) metric is computed utilizing
the correlation of the ranks generated from the observed and the corresponding
predicted data. First, the observed and predicted data of the molecules are ranked
and the (Pearson’s) correlation coefficients of the corresponding ranks are
determined with (rz(rank)) and without intercept (roz(rank)). The rz(rank) and roz(rank)
calculated employing the rank-order are used to compute the rmz(rank) metric. The
values of rz(mk) and roz(mk) vary from each other considering the variation in
ranking of the two variables. In an ideal ranking, where the observed and
predicted response data perfectly match with each other for all molecules, the
obtained rmz(rank) metric value is 1. The minimum acceptable threshold value for
the T'm’(rank) Metric is 0.5.

ASSESSMENT OF CHANCE CORRELATION: Y-RANDOMIZATION

Y-randomization test is a practice to make sure the robustness of the QSAR
model. In Y-randomization, validation is carried out by permuting the response
values (Y) with respect to the descriptor matrix which has been kept unaltered.
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There are two types of randomization tests namely process and model
randomization that can be performed at varying confidence levels. In case of
process randomization, the response variables are arbitrarily jumbled, and variable
selection is done newly from the entire descriptor matrix. In contrast, for model
randomization, the dependent variables are scrambled and new models are
constructed employing the same set of variables as present in the nonrandom
model.

CRPZ

The degree of variation in the values of the squared mean correlation coefficient
of the randomized model (R;”) and squared correlation coefficient of the
nonrandom model (R?) is reflected in the value of Csz [65] parameter. This metric
penalizes the model R* for a small difference between the values of the squared

correlation coefficients of the non-random (R”) and the randomized (R,%) models
as per the following equation (Eq. 28):

“R>=Rx\[R* R’ (28)

The threshold value of © p2 is 0.5 and a QSAR model having the corresponding
value above the stated limit might be correctly considered that the model is not
obtained by chance only.

Another approach for the assessment of chance correlation deals with set of
decision inequalities utilizing the values of szrand and Rzyrand and their
relationship as that Rzyrand > szrand. The approach has been suggested by Eriksson
and Wold [9]. They have set the following rules to measure any kind of chance
correlation in the QSAR model.

“(i) szmnd < 0.2 and Rzymnd < 0.2 =2 no chance correlation
(ii) any Q2 yrand and 0.2 < Rzymnd< 0.3 2 negligible chance correlation
(iii) any QZ yrand and 0.3 < Rzymnd < 0.4 2 tolerable chance correlation

(iv) any szm,,d and Rzymnd > (.4 2 recognised chance correlation”
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Thus, the number of randomization resulting in false positive correlations is
counted up as the correlation frequency from the szrand Vs Rzyrand plot.

VALIDATION METRICS FOR CLASSIFICATION BASED QSAR MODELS

In order to assess the performance of classification based models, validation is
one of the utmost criterion in terms of qualitative predictions [66]. Validation for
a classification based model is often performed for two-class problems, where the
compounds are classified into actives or inactives.

Goodness-of-fit and Quality Measures
Wilks Lambda (2) Statistics

The Wilks Lambda is a widely used parameter for the testing of significance of
discriminant model function. It is a distance based parameter and is calculated
from the scalar transformations of the covariance matrices of between and within-
groups variances. In a classification analysis, where at least two groups are
present, Wilks lambda is determined as the ratio of within group sum of squares
and total sum of squares, i.e. within-category to total dispersion [67].

Wilks A = Within group sum of square

(29)
Total sum of square

Let us consider B, and W, are the random p x p independent variable matrix with

the distribution W, (¢, ) and W, (n, ), respectively considering n>p. Then the

Wilks A will be given by the following equation [33]:

B
A =det —gJ (30)
(Bg +W,

Where ‘det’ refers to the determinant of the matrix constructed using descriptors.
Wilks lambda focuses on the best discriminating property of the analyzed
independent variables and it spans from 0 to 1, where 0 corresponds to different
values of group means signifying good level of discrimination achieved by
variable and 1 referring to similar group mean values meaning no discrimination
achieved by the variables. Hence, the value of Wilks lambda for a good
discriminant model should preferably be lower.
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Canonical Index (R.)

The measure of the strength of the relationship between the two variates is
expressed as a canonical correlation coefficient [68].

R, = /—/1"/1
1+ A4, 31)

Here, 7; 1s refereed as eigen value of the matrix.

Chi-Square (){2 )

The chi-square (y°) statistic identifies the liberty between two groups signifying
that a higher value of this metric will point out superior separability between
groups, i.e. good classification analysis [69].

t _F 2
g U=h) .
i=l1 i

1

where, f; is observed response, F; is predicted response and ¢ is the number of
observations.

Squared Mahalanobis Distance

Square of Mahalanobis distance is measured during linear discriminant analysis for
the determination of likelihood of a compound to be classified in a specific group in
the discriminant space. In a referred discrimination space or transformed space,
euclidean distances among data points become equal to Mahalanobis distances. In a
multivariate normal distribution with covariance matrix X, the Mahalanobis distance
between any two data points x; and x; can be defined as [67]:

 vtanatanovis (Xi» xj) - \/(xi N xl')T Z B (x; = xf) (33)

In eqn. 33, x; and x; are two random data points, 7 is transpose of a matrix and >
is inverse of the covariance matrix.
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Model Performance Parameters

The compounds can be classified using the developed classification based QSAR
models into four groups based on a assessment between the observed and
classified activity values: (i) true positives (TP): the active (positive) compounds
which have been correctly classified as actives, (ii) false positives (FP): the active
compounds which have been incorrectly classified as inactives, (iii) false
negatives (FN): the inactive (negative) compounds erroneously classified as
positives, i.e. actives, and (iv) true negatives (TN): inactive compounds which
have been correctly predicted as inactive [70]. Employing this classification, a
two-by-two confusion matrix [71] can be prepared individually for the training
and test sets. To assess the classifier model performance and classification
competence, various statistical tests are employed.

P
Sensitivity = Recall = ——
TP+ FN (34)
TP
Specificity = —— 35
pecificity TP + FP (35)
Accuracy = TP+IN (36)
TP+ FP+TN +FN
2(Recall)(Pr ecision
F —measure = ( X — ) (37)
Recall + Precision
TP
ecision TP TP fp rate (38)

G-Means

A simple way to assess the model’s capability to correctly classify active and
inactive compounds using the combination of sensitivity and specificity into a
single value employing the geometric mean (G-means) [72]:

G-means = \/ Sensitivity x Specificity (39)
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Cohen’s k

Cohen’s kappa (k) can be used to determine the conformity between classification
models and known classifications [73]. It can be calculated using the following

formulae:
Cohen's k = w (40)
1-F (e)
Pa)= (TP+TN) 1
’ (TP+FP+FN +TN)
Pe)- {(TP+ FP)x (TP + FN)} +{(TN + FP)x (TN + FN)} @)

' (TP +FN + FP+TN)

where, P/(a) is the relative agreement between the predicted classification of the
model and the known classification, and P(e) is the hypothetical probability of
chance agreement. The values of Pi(a) and P,(e) can be calculated from the generated
confusion matrix. Cohen’s kappa returns values between —1 (no agreement) and 1
(complete agreement). Cohen’s kappa values between —1.0 and 0.4 point out that the
model is a poor predictor, values between 0.4 and 0.6 designate that the model is
average, values between 0.6 and 0.8 imply that the model is satisfactory, and values
between 0.8 and 1.0 signify that the model is highly predictive.

Receiver Operating Characteristics (ROC) Curve

A ROC curve presents a visual representation of the success and error observed in
a classification model. The curve is plotted taking true positive rate (tp) on the ¥
axis and false positive rate (fp) rate on the X axis, and the nature of the curve
provides easier detection of the correctness of prediction. Apart from
classification problems, ROC curves have been a useful measure in signal
detection theory since the past intended for determining the tradeoff between hit
rates and false alarm rates of classifiers [71].

Positives (active molecules) correctly classified
Ip rate = ( ) Y i = Sensitivity (43)
Total postives




How to Judge Predictive Quality QSAR Models Frontiers in Computational Chemistry, Vol. 2 105

Negatives (inactive compounds) incorrectly classified

fp rate= =1—specificity (44)

Total negatives

Thus, the ROC curve may also be drawn by plotting the fp rate and the tp rate
along the X and Y axes respectively. It signifies the number of correctly and
wrongly identified objects by the developed classifier. A sample picture for ROC
curve is presented in Fig. 4. Most classifiers can be varied from “conservative” to
“liberal” classifiers. A perfect classifier correctly classifies all positive cases and
has no false positives. A conservative classifier (lower left region of the ROC
space) requires strong evidence to classify a point as positive while a liberal
classifier (upper right region of the ROC space) does not require much evidence
to classify an event as positive.

Perfect classifier
e B O e 7
@ Liberal classifier 2 ’//"
= : 7
C 0.75¢° P
2 1
= - : ,/
= - . ~
g 5 o > : /
= Conservative L E050: /./"
é classifier e = L S
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. Worse classifier o //
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False positive rate

Figure 4: The ROC space (left) and a sample ROC curve (right).

ROCED and ROCFIT

Two new metrics employing distances in a ROC curve for the identification of the
acceptable classification models are ROC graph Euclidean distance (ROCED) and
ROC graph Euclidean distance corrected with Fitness Function (FIT(L)) or Wilks
A (ROCFIT) [74]. It is interesting to point out that these two metrics make a
proper balance in both training and test sets.
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If the best model is one whose depiction is positioned as close as possible to the
upper left corner in the ROC graph, a good indicator would be a measure of this
distance. The Euclidean distance between the perfect and a real classifier (d;)
expressed by the following equation:

d, =/(Se, - Se,)’ +(Sp, - 5p,)’ (45)

where Se, and Se; are the respective sensitivity values of the perfect and the real
classifier, while Sp, and Sp, represent the specificity values of the perfect and real
classifier, respectively. As both the sensitivity and specificity for a perfect classifier
have a value of 1, the euclidean distance can be calculated as following equation:

d, =+[(1-Se,)* +(1-Sp,)’ (46)

where 1 = 1 stands for the training set, and 1 = 2 for the test set. As these two
distances corresponding to the training and test sets should be as small as
possible, the parameter can be defined as follows:
ROCED = (|d, —d,|+1)x(d, +d,)x(d, +1) 47)
where, d; and d, are depiction of the distances in a ROC graph for the training and
test sets respectively.

ROCED can take values between 0 (which signifies an ideal classification for
both training and test sets) and 4.5 (d; = 0.5 random classifier and d, = 1). Models
with values greater than 2.5 indicate that these models have random responses.

A new parameter ROCFIT (ROC graph Euclidean Distance corrected with Wilks
A) has also been introduced to avoid the probable loss of significance in the
variables of the models generated by linear discriminant analysis (LDA) using
only Eqn. 47,. ROCFIT is defined as follows:

ROCFIT = ROCED (48)

Wilks(1)
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AUC-ROC

AU-ROC is equal to a straightforward average of the ranks of the actives, the
good performance of "early recognitions" is offset rapidly by "late recognitions"
[75, 76]. AUROC is approximately normal distributed, with mean

H= % + % (N =n) and varianceo” =N +%2n (N=n)" Here, the number of

actives and the total number of compounds are denoted by n and N respectively.
AU-ROC defined in equation (47) is linearly related to the rank sum of actives,
which is also called Mann-Whitney U test. 7; is the rank of the iy, active.

n
;r[ n+1

AUC-ROC =1-
nx(N—n)+2><(N—n)

(49)

RIE and BEDROC

Truchon and Bayly [75] have shown that the exponential weighting schemes,
BEDROC and robust initial enhancement (RIE) provide good "early recognition"
of actives. By changing the tuning parameter, a, users can control the earliness of
"early recognition" to test whether a ranking method is useful in the context of
V'S. BEDROC is bounded by interval [0, 1] and can be interpreted as the
probability that an active is ranked before a randomly selected compound

exponentially distributed with parameter o, only when M a<<1. RIE, developed

by Sheridan et al. [77], used an exponential weighting scheme, that places heavier
weight to "early recognized" actives.

I 5 -ax
I e i
n -
RIE = -
1 |1-e O
N e%—l

In Eq. (50), x; = /N is the relative rank of the ith active and a is a tuning
parameter. BEDROC is derived from RIE and it is bounded by [0, 1]. BEDROC
has a linear relationship with RIE,
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;sinh(%) |

BEDROC = RIE x + (51)

cmqgﬁ—mm&%—a;jl_ﬂﬁq

Although RIE and BEDROC produce dissimilar values, their distributions are
alike up to a scale and a translation factor, and their correlation is 1.

AUC-pROC

Logarithmic transformation shifts the emphasis from "late recognition" to "early
recognitions". Clark and Clark [78] proposed a new metric, pROC, on basis of the
negative logarithmic transformation of false positive rates, 0. When the false
positive rate is zero, they suggested a zero-point continuity modification should
be made by replacing zero with 1/N.

AUC- pROC———leogm( /i J Z logm( j (52)
n

i=1

RIE, BEDROC and AUC-pROC metrics are used for evaluating the performance
of classification models as well as for the virtual screening performance of the
models. It is interesting to point out that to employ these metrics to evaluate the
performance of a model in typical external sets (about the same number of actives
and inactives) will lead to results suffering the “saturation effect”.

Matthews Correlation Coefficient (MCC)

The quality of a binary (two-class) classification is measured by another
parameter MCC [79]. MCC consider true and false positives as well as negatives
and generally regarded as a balanced measure which can be utilized even if the
classes are of very different sizes. The MCC is a correlation coefficient between
the observed and predicted binary classifications which returns a value between
—1 and +1. A perfect prediction is presented by an MCC coefficient of +1,
average random prediction by 0 and —1 is considered as inverse prediction.
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The MCC can be calculated considering the confusion matrix using the following
formula:

B TPxTN — FPx FN
\/(TP+FP)(TP+FN)(TN+FP)(TN+FN)

mcc (53)

The meaning of TP, TN, FP and FN are same as discussed earlier. The
denominator value will be considered one if any of the sums in the denominator is
zero. This parameter in particular addresses the issue of inappropriate explanation
of a confusion matrix, and the cases where the dataset sizes are higher.

Pharmacological Distribution Diagram (PDD)

Pharmacological distribution diagram (PDD) is a frequency distribution plot of a
dependent variable where expectancy values of the variable is plotted in the
Y-axis against numeric intervals of the variable in the X-axis. In a classification
issue, expectancy refers to the probability of categorization of a compound in a
specific group for a specific value of the discriminant function. During LDA, a
discriminant function (DF) is developed, which is a mathematical equation, used
for the calculation of discriminant scores of every individual compounds
(machine learning classification algorithms also provide scores that can be
employed in the same way the LDA scores are). Then the discriminant function
values of all samples are taken in the abscissa in the form of range, and the
expectancy values (probability of activity) are plotted in the ordinate against those
ranges. Hence, this graph visually signifies the overlapping regions of the
categories e.g., positives and negatives, as well as it shows the regions of DF
values that possess maximal probability of finding actives and inactives [80]. For
a classification case comprising of two classes like actives and inactives (or
positives and negatives), two terms named ‘active expectancy’ and ‘inactive
expectancy’ may be defined as below where the denominator is added with a
numerical value of 100 to avoid division by zero [80]:

Percentage of actives

Activity expectancy = £, = (54)

(Percentage of inactives + 100)
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Percentage of inactives

(Percentage of actives + 100)

Inactivity expectancy = E, = (55)

where ‘a’ and ‘i’ are the number of occurrences of active and inactive compounds
at a specific range. It can be evidently understood that for a perfect classification
scheme, the active (positive) and inactive (negative) compounds will always be
characterized by different ranges of DF values, and hence in an ideal discriminant
operation, the actives will always be separated than the inactives whereas
overlapping of them will correspond to error in prediction referring to false
positives as well as false negatives. A sample picture for PDDs showing good and
bad classifications is represented in Fig. 5.
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Figure 5: Sample PDDs showing good and bad classifications.

APPLICABILITY DOMAIN (AD)

The applicability domain (AD) [81-86] is a theoretical area in chemical space,
defined by the model descriptors and modeled response. The AD of a model plays
a crucial role for computing the uncertainty in the prediction for a test molecule
based on similarity to the molecules utilized to construct the QSAR model. The
prediction of a modelled response using QSAR is valid only when the compound
being predicted falls within the AD of the model as it is unfeasible to predict all
chemicals using a single model. AD is the physico-chemical, structural or
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biological space based on which the training set of the model is constructed, and
the model cane be used for predictions of NCEs within the specific domain [87].
To make confident predictions, a QSAR model should always be employed for
those molecules which are within its applicability domain.

A conceptual guidance was offered by the Setubal Workshop [42] on defining AD
of QSAR models, but it is complicated for use directly. Ideally the models should
only be used to make predictions within its domain by interpolation [88]. There
are four major approaches for estimating interpolation regions in a multivariate
space as discussed thoroughly in Table 4 [86, 89-96].

Table 4: Methods for estimating AD

AD Methods Hypothesis Criteria
approaches
Range based | Boundingbox | The range of each descriptor is
(Descriptor considered defining an n-dimensional | Any test set compounds,
ranges) hyper-rectangle with sides parallel to the | which are not present in any of
coordinate axes. these particular ranges, are
PCA bounding | Principal components (PC) construct a | considered out of the AD
box new orthogonal coordinate system and
(Principal allow to correct the correlations between
components descriptors. The minimum value and the
ranges) maximum value of each PC define an n-
dimensional hyper-rectangle with sides
parallel to the PC. The AD is defined
with the created hyper-rectangle.
TOPKAT The Optimum Prediction Space (OPS) | The Property Sensitive object
Optimal from TOPKAT uses a variation of PCA | Similarity (PSS) between the
Prediction and therefore creates a novel orthogonal | training set and a queried point
Space coordinate system. In this system, the | assesses the confidence of the
OPS boundary is denoted by the | prediction.
minimum and maximum values of the
data points on each axis of the OPS
coordinate system.
Geometric Convex Hull The coverage of an n-dimensional set | Interpolation space is defined
methods using the convex hull calculation is | by the smallest convex area
estimated. containing the entire training
set.
Distance- Mahalanobis | It considers the distance of an | Observations with values
based distance observation from the mean values of the | much higher than those of the
methods independent variables but not the impact | remaining ones are considered
on the predicted value. Mahalanobis | to be outside of the AD.
distance is unique as it involuntarily
takes into account the correlation
between descriptor axes.
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Table 4: contd....

Roy and Kar

Euclidean The distance scores are calculated by the
distance Euclidean distance norm. A distance | Compounds with distance
score, dj, for two different compounds X | values adequately higher than
and X; can be measured by the Euclidean | the most active probes are
distance norm. The Euclidean distance | identified to be outside the
can be expressed by the following | AD.
equation:
dy =
The mean distances of one sample to the
residual ones were calculated as follows:
n
_ 24
= /=
d; n—1
where, i=1,2,.....n.
The mean distances are then normalized
within the interval of zero to one.
City block City-block distance is the summed
distance difference across dimensions and is
computed as:
n
d(x,y)=2|x, - )|
i=1
It examines the absolute differences
between coordinates of a pair of objects
(x; and y;). A triangular distribution is
assumed by city-block distance and is
predominantly helpful for the distinct
type of variabls.
Leverage The leverage () of a compound in the | The AD of the model is
approach original variable space is computed | defined as a squared area
utilizing the HAT matrix as: within the +3 band for
H=XXX"xh, standardised residuals and the
where H is an (n x n) matrix that l;\;e_rage 1V l;[hreshold
orthogonally projects vectors into the Ei =3(p*1) }rll]’ w gre 1}
space spanned by the columns of X. eqotes the number - o
variables and n signify the
number of data points.
Hotelling T2 It is a multivariate student’s ¢ test and | AD is determined with the ¢
test presumes a normal data distribution. | value. The significant

Statistical significance of the disparity on
the means of two or more variables
between two groups is assessed.

compounds remain within the
determined AD.
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Table 4: contd....

Probability Parametric It assumes a standard distribution such as | Real data distribution is
density method Gaussian and Poisson distributions captured without help of any

distribution Non It does not rely on such assumptions ref§r§nce data P oint.
. S o Individual data points are
parametric considering the data distribution
checked whether they belong
method
to the set.
CONCLUSION

With the introduction of modernized chemometric tools, a great number of researches
have been originated for to the expansion of a noteworthy relationship between
molecular structure and function, specifically in the fields of medicine and predictive
toxicology. Exciting and encouraging outcomes of QSAR approaches are noticed in
the process of drug design for the last two decades. Here, we have tried to discuss
current best practices validation metrics for constructing robust and predictive QSAR
models among the QSAR researchers. Like any computational approach, it is vital that
the QSAR method is taken as a technically trustworthy device for predicting the
biological activities/properties/ toxicities of untested drug/chemicals. To make it
transferable and acceptable to the scientific community, validation metrics along with
the mechanistic interpretation are of the utmost importance for any developed QSAR
model. A wide range of validation techniques have also been proposed for identifying
the capability of QSAR models to predict the activity of NCEs. Predictive potential of
QSAR models is judged from the internal as well as by the external validation tests
based on the training and external test set molecules respectively. Moreover, a single
metric may often prove to be inadequate for assessing the performance of a model and
therefore overall validation parameters should be considered for selection of the ideal
QSAR model for a particular endpoint. Therefore, this book chapter has focused on
the critical metrics of QSAR modelling to allow their proper utilization. The discussed
metrics should be helpful to both computational and synthetic chemists as well as
experimental biologists who are working in biological screening of chemical libraries
using QSAR models.
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ABBREVIATIONS

AD = Applicability Domain

AIC = Akaike’s information criteria
AUC = Area Under Curve

CCC = Concordance Correlation Coefficient
GA = Genetic algorithm

ITS = Internal test set

LDA = Linear Discriminatory Analysis
LMO = Leave-many-out

LOO = Leave-one-out

MCC = Matthews correlation coefficient
MIC = Model Instability Coefficient
MLR = Multiple Linear Regression

MVIC = Model Value Instability Coefficient
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NCE New Chemical Entity

OECD Organization for Economic Cooperation and Development
PCA Principal Component Analysis

PDD Pharmacological distribution diagram

PRESS Predicted residual sum of squares

QSAR Quantitative structure-activity relationship

RIE Robust initial enhancement

RMSEP Root mean square error in prediction

ROC Receiver operating characteristics

ROCED ROC graph Euclidean distance

ROCFIT ROC graph Euclidean distance corrected with Fitness Function
SDEP Standard deviation of error of prediction

SLR Sum of the log of ranks test

VIF Variance inflation factor
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Abstract: Nitrogen mustards are the most extensively used chemotherapeutic agent
since their evolution in the mid-1940s. The high degree of cytotoxicity of these drugs is
attributed to their ability to form DNA interstrand cross-linked adducts, thereby
inhibiting DNA replication. Interstrand cross-linking occurs via formation of an
unstable intermediate, the aziridinium ion and formation of mono-adducts. Mustine, the
first member of this family, suffers from some serious drawbacks such as high rate of
hydrolysis. Therefore its stable analogs have been sought; and since its discovery
hundreds of analogs have been synthesized.

This article presents a brief introduction to nitrogen mustards and deliberates on the
works already devoted to establishing the mechanism of action of this class of drug. A
brief discussion on DFT and DFRT is also furnished in section 1.2. Further,
computational studies performed on nitrogen mustards are discussed in section 1.3 and
1.4. Section 1.4 of the article consists of research works from our group and has special
reference to DFT and DFRT.

Keywords: Anticancer drug, aziridinium ion, bis-alkylating agent, cancer
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reactivity theory (DFRT), DNA alkylation, external electric field, maximum
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structural variation.

INTRODUCTION TO NITROGEN MUSTARDS

The world has always witnessed some great accidental discoveries. Evolution of
nitrogen mustards as chemotherapeutic agent is a perfect example of such miracle.
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The mustard gas (sulphur mustard, (1)), initially used as a chemical weapon, was
responsible for thousands of deaths during World War I [1]. In a subsequent
development, Louis S. Goodman and Alfred Gilman were recruited by the United
states Department of Defence to investigate the potential therapeutic application
of this chemical warfare agent. They observed that sulphur mustard is too volatile
to be used in laboratory experiments, so they replaced the sulphur atom with
nitrogen and synthesized a more stable product, mustine (2), the first member of
the family called ‘nitrogen mustard’.

CHj

|
C|/\/S\/\c| CI/\/N\/\m

2
o) @

It was ostensibly one of the greatest discoveries in the field of medicine that
ushered in the advent of cancer chemotherapy. Mustine, also called
mechlorethamine or mustragen (2), is the earliest member of the nitrogen mustard
family and is still being used as a potent anticancer drug [2]. A number of drugs
of this family have been synthesized and their antitumor activity has been
analyzed.

Though, the mode of action of both sulphur and nitrogen mustards are similar, due
to highly volatile nature of sulphur mustard, it has been thrown out of the frame.

Nitrogen mustard is termed as biological alkylator or an alkylating agent.
According to Ross, an alkylating agent is a chemical compound that can replace a
hydrogen atom in a molecule by an alkyl group [3]. In Oncology, the term
alkylating agent refers to any antineoplastic compound that irreversibly binds (by
formation of covalent bonds) to a variety of susceptible biomolecules such as
nucleic acids, proteins efc. The simplest result of covalent bond formation with
DNA is the cell death.

Establishing the mechanism of action of nitrogen mustards has been a formidable
challenge for the researchers. A plethora of attempts have been made to
understand the mechanism of action of these drugs, the first been made by
Chanutin and Gjessing in 1946 [4]. They used UV-spectroscopy to show that



Density Functional Studies of Bis-alkylating Nitrogen Frontiers in Computational Chemistry, Vol. 2 123

mustine reacts with DNA bases, but could not specify the group reacting with.
Nucleic acids contain various centers which are vulnerable to attack by nitrogen
mustards under physiological condition. On analyzing the product between the
mustard gas and nucleic acid, Elmore et al. [5] confirmed that both basic and
phosphate groups are prone to attack. But a conclusion regarding specific site of
alkylation still eluded. This was followed by a number of studies to clarify the
alkylation site; [6-10]; Wheeler and Skipper performed experimental studies on
in-vivo alkylation of DNA [8]. Brookes and Lawley studied alkylation of
S-labelled mustard gas with nucleic acids in neutral aqueous solution at
physiological temperature (37 °C) [11] and confirmed the reaction of mustard gas
with DNA and RNA bases.

A number of studies have confirmed that alkylation of DNA by nitrogen mustards
passes through the formation of aziridinium ion [12-14]. The first step of the
alkylation reaction involves donation of a lone pair of electron from the N-center
of the nitrogen mustard to the chloroethyl side chain with the release of a chloride
ion (CI), forming an aziridinium (4z" ) ion (step 1, Scheme 1). Being a positively
charged species, the Az" ion is highly unstable and reacts immediately with the
nucleophilic centers in biomolecules, (attack at guanine N7 is shown in step 2,
Scheme 1) [15-16]. This leads to the formation of a drug-DNA mono-adduct. The
mono-adduct further cyclizes to form a second aziridinium (42" ion (step 3,
Scheme 1) which can bind to a second DNA strand resulting in a drug-DNA
cross-linked adduct (step 4, Scheme 1).

Usually, all the heteroatoms in DNA/RNA bases exhibit higher tendency to
interact with electrophiles like aziridinium ion [17-18]. Among different
nucleophilic centers present in DNA bases, N1, N3 and N7 in adenine, N1, N3
and O2 in cytosine, N3 and O4 in thymine, N3, N7 and O6 in guanine are some of
the highly preferred sites for alkylation. However, alkylation at these reactive sites
depends on the reaction conditions [19-26]. It is expected that, due to steric
hindrance, access to some sites in a double-stranded DNA is limited as compared
to a single stranded DNA. Factors determining the selectivity of an alkylating
drug towards DNA bases are very complicated [27-28]. The order of reactivity of
the nucleophilic sites of the bases towards alkylating agent is: guanine N7 >
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adenine N1 > cytosine N1 > adenine N3 in RNA and guanine N7 > adenine N3 >
cytosine N1 in DNA [29].

/ Step 1 R—N
R—N —_—
\ -Cr \
Cl Cl
Nitrogen mustard Aziridinium ion
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Scheme 1: Mechanism of DNA alkylation by nitrogen mustards.
Lawley and Brookes [30] confirmed that cytotoxic action of sulphur and nitrogen

mustards is not associated with the inhibition of cell growth as measured by RNA
and protein synthesis but is caused due to interstrand cross-linking in DNA.
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Cytotoxicity of nitrogen mustards is associated with decreased DNA synthesis
because of DNA interstrand cross-linking, which prevents DNA replication.
Interestingly, intensity of cross-linking of DNA by nitrogen mustards depends
upon the size of the DNA fragment reacting with. Cross-linking by nitrogen
mustards takes place through bis-alkylation at guanine N7 in right handed B DNA
in 5'-GC-3' or 3'CG-5' sequence.

Inspite of the substantial amount of research works devoted to the understanding
of alkylation of DNA, prior to work of Mattes et al. [31], DNA sequence
selectivity towards guanine N7 was not properly understood. The group attached
to N atom in nitrogen mustards affects the reactivity of aziridinium ion. This in
turn might have some influence on sequence selectivity [32].

The dynamics of DNA alkylation and reactivity of different nucleic acids towards
alkylation depends on different factors. Reactivity of different sites of guanine
depends on the type of bases it is surrounded with. Compared to an isolated
guanine, an enhanced rate of the reaction was observed for guanine N7 when it is
surrounded by other guanines. The reaction of the drugs with isolated DNA 1is
completely different from that in intact cells. The cellular environment also plays
an important role during the alkylation reaction although it does not alter the
sequence specificity. Limited diffusion of the drug molecule into the cell,
alkylation reaction to other cellular components, etc. are some of the factors
which determine the extent of alkylation in intact cells and in isolated DNA [33].
Pullman et al. [34] studied the effect of adjacent base pairs on molecular
electrostatic potential (MEP) in the vicinity of various positions in B-DNA for
both single and double stranded DNA. Another important point to note is that,
both aliphatic and aromatic nitrogen mustards show similar sequence selectivity.

Price et al. [35] studied the reactivity of mono-functional nitrogen mustards
(having only one chloroethyl chain) and observed that this class of nitrogen
mustards was not much effective in preventing DNA replication due to its
inability to form cross-linked adducts.

Nitrogen mustards form interstrand as well as intrastrand cross-linked adducts
with DNA. However, formation of interstrand cross-linked adducts is favored
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over intrastrand adducts. This is because, the distance between the two chlorine
atoms in nitrogen mustards is ~7 A and thus it becomes difficult for the second
aziridinium ion to alkylate a second guanine of the same strand which is separated
from the first by a distance of 8.9 A in a B-DNA. This makes intrastrand cross-
linking more difficult and thus mono-adduct happens to be the major portion
(~90%) of the alkylated products [36]. The cytotoxicity of nitrogen mustards is
proved to be allied with its ability to form interstrand cross-linked adducts that
prohibits DNA replication and transcription and ultimately leads to cell death [37,
38]. However, a mono-adduct is found to be less cytotoxic compared to cross-
linked adducts.

Apart from DNA-DNA intra- and interstrand cross-linking, there is another
possibility of formation of a cross-linked adduct i.e. the DNA-protein cross-linked
adduct, Scheme 2. A number of studies have confirmed the formation of such
DNA-Protein cross-linked adducts [39-42].

The mystery behind the mode of action of the drug has been unfolded but then
another controversy crops up: what leads to cytotoxicity of nitrogen mustards:
intra- or interstrand cross-linking? Kohn tried to provide an answer to this
question. He suggested that out of the different lesions formed during alkylation
of DNA, interstrand cross-links are presumed to be particularly cytotoxic [43].
His assumption was based on the fact that the bis-functional drugs are more
cytotoxic compared to mono-functional drugs [44]. Moreover, potency to form
cross-linked adduct is not the sole criterion for cytotoxicity of a drug; instead, low
rate of repairing of damaged DNA is also responsible for cytotoxicity. Thus,
cytotoxicity of a drug molecule is affected by DNA repair [45]. In cultured cells,
DNA interstrand cross-links comprise of 30-40% of the total DNA cross-links
(excluding intrastrand cross-links), while the remaining constitutes DNA-protein
cross-links [46].

Cytotoxicity of a drug depends on the rate of removal of the cross-linked adducts
which varies from drug to drug. For example, the rate of removal of cross-linked
adducts for melphalan is higher than that of mustine [46]. Moreover, relationship
between DNA damage and repair of damaged DNA is also an important factor.
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Scheme 2: DNA-protein cross-linking.

Consequences of DNA Alkylation

Under physiological conditions, keto-form of guanine is more stable than its enol-
form. An important consequence of guanine alkylation is the formation of
ammonium ion which makes guanine more acidic and hence shifts the keto-enol
equilibrium towards the enol-tautomer [47, 48]. Now a different chemistry starts
emerging in hydrogen bond formations between guanine and other bases. In its
usual physiological form, (keto-form) guanine pairs up with cytosine forming
three hydrogen bonds (3a). However, in its enol-form, guanine is not in a suitable
position to pair up with cytosine, instead it has now gained the structure which is
very much suitable for pairing up with thymine (3b). Thus alkylation of DNA at
guanine N7 leads to the miscoding in DNA.
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(3) Miscoding due to alkylation at guanine N7

Similar miscoding in DNA results when alkylation occurs at the guanine O6; it
alters the normal hydrogen bonding between guanine-cytosine base pair and
results in the formation of guanine-thymine base pair (4) [49-53].
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(4) Miscoding due to alkylation at guanine O6 (guanine-thymine pairing)

As a result of alkylation at the endocyclic nitrogen atoms in DNA bases by
aziridinium ions or other electrophiles, the nucleobases acquire a positive charge
and result in destabilization. For example, alkylation at guanine N3 or N7,
adenine N1, N3 or N7 and cytosine N3 results in unstable lesions. To neutralize
the additional formal charge(s) imparted to the nucleobases, they undergo further
reaction. There are three types of reactions involved in decomposition of alkylated
bases [54]:

a) Deglycosylation or depurination or depyrimidination: it involves
hydrolytic loss of the alkylated base from the DNA backbone.

b) Ring opening: opening of pyridine ring.
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c) Reverse alkylation: loss of the alkyl group from the base.

Deglycosylation (Depurination or Depyrimidination)

Under normal physiological conditions, the glycosidic bonds holding the DNA
base to sugar-phosphate backbone are quite stable and resistant to hydrolysis [55].
Breaking of these glycosidic bonds is referred to as deglycosylation (5). Under
physiological conditions, the rate of deglycosylation of cytosine and thymine is
extremely slow (rate constant=1.5x10-12 s half life=14,700 years), and in case
of guanine and adenine it is slightly faster, (rate constant = 3.0x10-11 s, half life
= 730 years). In contrast, the rate of deglycosylation is quite high in alkylated
bases. The degree of destabilization depends on the site of alkylation as well as on
the nature of the attacking electrophiles and varies among the bases. For example,
the half lives for deglycosylation of bases (with simple alkyl groups) are: N7 of
dA is 3 h, N3 of dA is 24 h, N7 of dG is 150 h, O2 of dC is 750 h; for O2 of dT
and N3 of dC, the half lives are slightly higher: 6300 h and 7700 h respectively
[54-58].
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(5) Deglycosylation

In alkylated DNA, attachment of an electrophile (e.g. aziridinium ion) to the
guanine N7 increases the electrophilicity at the adjacent positions. As a result of
this, leaving group ability of the alkylated base increases resulting in scission of
the C-N bond (glycosidic bond) and because of this an extraordinary increase in
deglycosylation rate is observed [54, 59-60]. However, in DNA duplex, the rate of
deglycosylation is slower as compared to a single stranded DNA or monomeric
nucleosides. Gates et al. [54] observed that the reaction is 50-100 times slower in
DNA duplex compared to monomeric nucleosides.
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Purine Ring Opening

Another possibility of degradation of alkylated DNA is through purine ring
opening as illustrated in (6). As a result of guanine N7 alkylation, electrophilicity
of the C8 center in the purine ring increases and this facilitates purine hydrolysis.
Hydrolysis at the C8 position of the purine ring (6a) leads to an intermediate (6c¢),
which undergoes further fragmentation. For example, attack on C8 position of
alkylated guanine by hydroxide ion leads to the fragmentation of imidazole ring
[61-64]. Intermediate (6c¢) further undergoes anomerization to afford intermediate
6d and subsequent DNA strand scission.
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(6) Ring opening in alkylated guanine

Ring opening mechanism in case of N1 alkylated adenine is different from that of
N7 alkylated guanine. It passes through Dimroth rearrangement [65]. N3
alkylated adenine also undergoes ring opening under basic condition but at a
slower rate as compared to deglycosylation [66]. Usually, under physiological
conditions, the rate of ring opening is quite slow compared to deglycosylation
[67]. Therefore, deglycosylation is expected to be primarily responsible for
degradation of alkylated DNA.
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Reverse Alkylation

The alkylated DNA may undergo reverse alkylation (loss of alkyl group). Reverse
alkylation has in fact been observed for some alkylating drugs (not in case of
nitrogen mustards). Especially few drug molecules, such as CC-1065 (alkylate
adenine N3), duocarmycin (alkylate adenine N3), leinamycin (alkylate guanine
N7) alkylate DNA to show subsequent reverse alkylation [68-70].

Nitrogen Mustard Derivatives

Mustine suffers from some demerits that arise due to highly reactive nature of the
aziridinium ion (4z" ) produced by it. Because of its highly reactive nature, it is
very prone to hydrolysis and reacts immediately with the nucleophilic centers in
biomolecules. Because of this it is marketed as a dry solid and just prior to
injection, its aqueous solution is prepared. Therefore, more stable analogs of
mustine were looked for. Substitution of the methyl group (which is not possible
in case of sulfur mustard) on the N-atom of mustine by aryl groups makes the N-
atom less nucleophilic and slows down the rate of 4z" ion formation [32]. This
lowers the reactivity of the nitrogen mustards and, as a result of this stabilization,
some of the drugs can be administered orally. Again, compounds prepared by
simple aryl substitution at the N-center of mustine are water insoluble and hence
are not suitable to be used as drugs. However, carboxyl and/or amine-containing
aryl substituted mustine are water soluble and are not as reactive to water as
mustine. Examples of such drugs are chlorambucil (7) and melphalan (8) efc. The
carboxyl group in these drugs is not connected to the phenyl ring directly so as to
make them more reactive or otherwise the lone pair present at the N-center may
delocalize. To avoid this, methylene groups are inserted in between phenyl and
carboxylic groups. Some other examples are phosphoramide mustard (9), uracil
mustard (10), quinacrine mustard (11), bendamustine (12) efc.

Number of attempts has been made in the past few decades which yielded many
successful outcomes. As for example, Ross and coworkers [71] synthesized four
aromatic nitrogen mustards (13) (with n = 0-4) containing carboxylic substituted
derivatives of N,N-di-2-chloroethylaniline. Robert ef al. [72] prepared cinchophen
derivatives of nitrogen mustard (14).
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Attempt were also made to introduce iodo- group instead of chloro- group in
chlorambucil, however it was found to be less active than chlorambucil against
the Walker tumour and Sarcoma 180 [73]. Creech ef al. [74] made an important
study and tested the activity of 140 compounds, including mustine, chloroquine
mustard, camoquine mustard, quinacrine mustard, nitromin, uracil mustard,
chlorambucil, melphalan, cyclophosphamide, nor-mustard, cinchophen mustard,
and numerous new analogs of nitrogen mustard. Interestingly, most of the
quinoline and acridine analogs were observed to be highly active from the stand
point of low molar dosage. Derivatives of chlorambucil and melphalan were also
synthesized by incorporating into several peptide hormones, including luteinizing
hormone-releasing hormone (LH-RH) [75].

After the discovery of mercaptopurine, which has very high antitumour activity, a
number of attempts have been made to synthesize its derivatives [76]. Substitution
at 1-, 3- or 7- positions of mercaptopurine exhibited no significant activity [77-
79]. However, substitution at the 9-position imparts anticancer activity to the
molecule [80, 81].

Other important chemotherapeutic agent that has been successfully applied
against cancer includes uracil mustard (10) [82-85] and its derivatives [86-88];

and estramustine (15), used in the treatment of advanced prostatic carcinoma [89].

Intercalating drugs are another important class of drugs that have been used

successfully in cancer chemotherapy. These drugs exhibit their cytotoxicity by
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intercalating between the DNA base pairs. Intercalating ability of 9-amino
acridine (16) is well established and a number of nitrogen mustard analogs have
been synthesized by incorporating the intercalating chromophore [90, 91].

OH CH,CH,CI

NH(CH,),N—/R

l N I OCHs
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The mechanism of action of these drugs consists of two steps. Initially, the drug
intercalates between the DNA base pairs and then alkylation takes place. Such a
two step reaction (intercalation followed by alkylation) results in 10-100 fold
lower concentration of acridine mustard required to alkylate DNA compared to
mustine. Aniline mustard analog, m-AMSA (17) was prepared by linking a
mustard residue to the aniline ring or acridine chromophore [92], but the
derivatives did not show any enhanced activity as compared to the parent
compound, AMSA. However, introduction of a short spacer between the nitrogen
mustard and 9-anilinoacridine increases the reactivity [93]. 9-anilinoacridine and
acridine derivatives, bearing nitrogen mustard residue at C4 of the acridine
chromophore, were found to possess potent cytotoxicity against human leukemia
and various solid tumors in-vitro [94]. To improve the chemical stability and
therapeutic efficiency, efforts have been made to synthesize aniline nitrogen
mustards linked to 9-anilinoacridines via urea linkage [95]. Derivatives with the
nitrogen mustard residue linked to the C3’ or C4' position of the anilino ring with
an O-ethylene (O-C2), O-butylene (O-C4), and methylene (C1) spacer were
prepared. A few of them were reported to possess approximately 100-fold more
potency than its parent analog AHMA [96]. Series of compounds were also
synthesized with nitrogen mustard pharmacophore on both anilino (C3’ or C4')
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and acridine (C4) rings with O-ethyl (O-C2) or O-butyl (O-C4) spacer and these
compounds exhibited significant in-vitro cytotoxicity [97].

NH,

HN CH,OH

X
=

N

(17)

Tallimustine (18), a benzoic acid nitrogen mustard derivative of distamycin A
(19) is also an effective antitumor drug that has been used as an important model
for designing new nitrogen mustards containing pyrrole-amide unit [98].
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Tallimustine consists of three pyrrole-amide units (n = 3, 18). Cytotoxicity of
benzoic acid mustard conjugated with pyrrole ring was examined [99]. The di-
pyrrole and tri-pyrrole conjugates did not produce any detectable guanine N7
alkylation but only alkylate AT tracts. Baraldi et al. [100] synthesized benzoic
acid mustard (BAM) derivatives of distamycin A, bearing one or more pyrazole
rings and tested their in-vitro and in-vivo activities against L1210 leukemia. Some
of these derivatives showed activity comparable to tallimustine. All the
compounds bearing the pyrazole ring close to the BAM moiety showed reduced
cytotoxicity in comparison to derivatives characterized by the BAM linked to a
pyrrole ring. No such effects were observed when conjugation was made to the
amidine terminus of the oligopeptidic frame. Benzoheterocyclic analogs of
tallimustine were not showing any enhanced activity [101].
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PNU-157911 (20) is one of the most important nitrogen mustard derivatives. In an
effort to examine the role of amidino group present in PNU-157911, a series of
cinnamoyl nitrogen mustards (pyrazole analogs of tallimustine) were synthesized
in which the amidino moiety was replaced by other moieties [102]. These
modifications on the amidino moiety showed significant growth inhibitory
activity against mouse leukemia L1210 cells. They also showed the capability to
interact with DNA with sequence selectivity for certain AT-rich sequences.
Compounds of this series possess a pattern of alkylation similar to that of
tallimustine, but they apear to be less reactive. Therefore, presence of the amidino
moiety or a basic moiety in general is not an absolute requirement for biological
activity. In-vitro and in-vivo activities of novel benzoyl and cinnamoyl nitrogen
mustard and half-mustard derivatives of distamycin A, in which the amidino
moiety was replaced by moieties of different physico-chemical features, were also
reported [103, 104]. As reported by Wang et al. [105], anticancer activity of
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distamycin A and nitrogen mustard conjugates, in which the nitrogen mustard unit
is coupled to the C-terminus of the pyrrole is observed to depend on the number
of pyrrole rings; compound bearing three pyrroles is more potent than compounds
bearing one or two pyrrole ring(s). Generally, it is observed that for distamycin
nitrogen mustard, potency of the compound increases approximately 10-fold with
the addition of one pyrrole unit up to a total of four pyrrole units. Interestingly,
switching the nitrogen mustard unit from the N-terminus to the C-terminus of the
pyrrole did not compromise with the cytotoxicity of the compounds. Distamycin
nitrogen mustard derivatives with different substituents at the amidino moiety
located at the C-terminal of the peptide were synthesized by Wang et al. [106];
compounds bearing a terminal ethylamido group show good antitumor activity
against human chronic leukemia K562 cells.

Although the nitrogen mustard derivatives possess revolutionized anticancer
activity, it also has got some serious drawbacks. These compounds are too polar
to cross the highly lipophilic Blood Brain Barrier (BBB) and because of this,
these drugs have very low brain penetration. Therefore, anticancer agents with
highly hydrophobic nature are sought for the treatment of cerebral tumors. One of
the most promisimg approaches to design CNS active anticancer drug is the
prodrug approach. This approach is based on redox system, analogus to the
NADH&NAD' coenzyme system. In a novel attempt Sing et al. synthesized
nicotinic nitrogen mustards that are hydrophilic in nature and can easily enter into
brain and then are oxidized to quarternary salts which can not efflux from brain
cells [107]. Based on redox prodrug approach a number of anticancer drugs have
been synthesized [108-113].

Because of two important properties viz. preferential accumulation in neoplastic
cells and inhibition of glycolysis, deoxygluocose, can also be attached to nitrogen
mustard for the treatment of brain tumors. Successful attempts have been made to
synthesize such derivatives by attaching the chlorambucil moiety to the glucose
unit [114, 115]. Singh et al. prepared such a class of nitrogen mustard derivatives
linked to CNS (central nervous system) active compound 1,4-benzodiazepine
[116]. Efforts have also been made to decrease the lipophilic nature of
chlorambucil and melphalan by preparing quaternary ammonium conjugates
[117]. Though, quaternary ammonium functionalization does not alter the
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cytotoxicity, it modifies the cell uptake by decreasing lipophilicity of the drug
molecules.

Napromustine, (21) derivative of napthalimide, displays an excellent antitumor
activity in-vivo against Sarcoma-180 and Ehrlich ascites carcinoma compared to
that of fluorouracil. Other derivatives of Napromustine, such as nitro (mitonafide)
and amine (amonafide), have also been tested, but no significant enhancement in
cytotoxicity is observed [118].

(0]
(¢]] N
N
Cl
(21)

Structurally modified carnitine analogs have been observed to show enhanced
anticancer activity compared to chlorambucil against A375 human melanoma,
HT29 resistant type colon carcinoma and MCF7 human breast carcinoma cells
[119]. Cyclic nitrogen mustards, structurally related to L-carnitine are effective
[120] and their trans-isomer produces better cytotoxicity than the cis-isomer.

Neocarzinostatin (NCS), an antitumor antibiotic, is a protein-chromophore
complex that exhibits cytotoxic action through DNA cleavage via H-abstraction
[121]. Cytotoxicity of such drugs resides with the chromophore moiety alone,
while the protein (apoNCS) protects and transports the labile chromophore. The
naphthoate portion (22) of NCS chromophore is the most important site for
binding to apoNCS and DNA intercalation. Attempts have been made to use
apoNCS to improve the hydrolytic stability of the novel bis-functional DNA
alkylating agents, melphalan and chlorambucil [121]. Though the melphalan
conjugate (23) exhibits higher in-vitro cytotoxic activity against human leukaemia
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cell line K562 than the unmodified melphalan, the inverse was observed in case of
chlorambucil conjugate.

Another new series of anticancer drugs called chimeric compounds, bearing the
combretastatin (24) and the nitrogen mustard moieties have been synthesized.
Amazingly, when combretastatin is attached to chlorambucil via an ester linkage (25),
the resultant compound proves to be significantly more potent than the combined
potency of the individual drugs. However, when combretastatin is conjugated to
nitrogen mustard via an ether linkage, loss in its potency is reported [122].

Benzoic acid derivatives are observed to be potential EGFR (Epidermal Growth
Factor Receptor) and HER-2 (Human Epidermal Growth Factor Receptor 2)
kinase inhibitor [123]. Especially, derivatives containing arylamine moiety show
better inhibitory activity than those containing fatty amine moiety.

Melphalan and chlorambucil derivatives of 2,2,6,6-tetramethyl-1-piperidinyloxy
radicals also show good potency against human leukaemia K562 cell line [124].
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Nitrogen mustard derivatives of 4-anilinoquinazoline, where the nitrogen mustard
pharmacophore is attached to the C6 of the 4-anilinoquinazolines via a urea
linkage, are found effective against breast cancer [125]. Recently, aromatic ring of
natural pyrimidine base has been replaced to obtain a thymine derivative of
chlorambucil [126].

Aromatic bisamidines, such as berenil, pentamidine, propamidine and furamidine,
are well-known antimicrobial and antifungal drugs [127-129]. Amino analogs of
pentamidine with tetra- and hexa-methylene chain between aromatic units show
antiproliferative activity against MCF7 (Michigan Cancer Foundation-7) breast
cancer cell line of mammalian tumour and inhibitory influence on the activity of
topoisomerase I and II [130]. Amino analogs of pentamidine with a
polymethylene (n=3-6) chain and their chlorambucil analogs exhibit cytotoxic
effect on MCF-7 human breast cancer cell line [131].

Because of their important biological and pharmacological properties,
isoflavonoids have attracted considerable research interests for a long time.
Formononetin, a type of isoflavonoids, has been reported to show many biological
activities including antioxidant, antidiabetic, antiestrogenic, antibacterial,
antiangiogenic effects and so on. Studies have shown that formononetin and its
derivatives exhibit potent antiproliferative activities against two human tumor
cells (Jurkat and HepG-2) in-vitro [132]. Recently, a series of formononetin
nitrogen mustard derivatives have been synthesized and their cytotoxicity has
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been evaluated in-vitro against five cancer cell lines (SH-SY5Y, HCT-116, DU-
145, Hela and SGC-7901). Many of them display more potent cytotoxicity
compared to melphalan [133].

Recent findings show that the uptake of polyamine compounds such as amino
acids (e.g. methionine) in cancer cells is high. Omoomi et al. [134] have
synthesized chlorambucil-methionine conjugate and tested it against breast cancer
MCF-7 cell line and observed high antineoplastic properties without any
abnormal toxicity. The conjugate has also showed very good anticancer activity
comparable to chlorambucil and less toxicity. Hence chlorambucil-methionine
conjugate has been considered to be a better option for the treatment of breast
cancer than Chlorambucil.

Further, in order to increase their antitumor potency and tumor selectivity,
bendamustine and melphalan have been esterified with N-(2-hydroxyethyl)
maleimide and connected by diamines with various chain lengths. Expectedly, the
two new derivatives showed higher cytotoxicity compared to bendamustine and
melphalan against breast cancer [135].

Studies of different hormone-linked antineoplastic agents reveal highly effective
results in receptor positive tumors in-vivo [136]. Among these conjugates, the
antitumor steroid hormone-nitrogen mustard combination is found to be quite
successful [137]. It is expected that a lipophilic steroid carrier molecule would aid
in the transport of the nitrogen mustard moiety to a specific target tissue more
efficiently. Nitrogen mustard derivatives of androstane [138, 139], estrone [140]
and estramustine phosphate [141-143] also exhibit high anticancer activity.

In order to deliver a cytotoxic molecule to the cancerous cells, the most efficient
technique is to replace the cholesteryl ester core by a suitable lipophilic cytotoxic
agent. This leads to the formation of cytotoxic-LDL (Low-density lipoprotein)
particles (reconstituted LDL or rLDL) that targets cancerous cell. Several such
cytotoxic compounds were synthesized and observed to be suitable for cancer
treatment [144]. Another important task is to improve the potency of rLDL by
increasing the number of cytotoxic molecules on each carrier without reducing its
hydrophobicity. Dubowchik et al. [145] synthesized mono-, bis- and tris- nitrogen
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mustard derivatives of oleoyl-steroid carbamates (26-28), where the cytotoxic
portion is attached away from the sterically congested steroid. The biological
evaluation shows that the bis- nitrogen mustard (27) is twice as potent as mono-
(26) and tris-mustard (28) [145].
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Steroidal cyclophosphamide derivatives do not exhibit any cytotoxic effect [146,
147]. However, steroidal nitrogen mustard derivatives of phenol and aniline
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mustards showed anticancer activity against several cancer cells [148].
Chlorambucil and 3-nitrochlorambucil esters of prasterone and pregnenolone
were tested against several human cell lines [MCF-7 (ER+), MDA-MB-468
(ER—), MDA-NQO1, Widr, DAoy, H460, OVCA-3 and A375], out of which, the
chlorambucil esters of prasterone displayed the highest anticancer activity [149].
Several estradiol-chlorambucil hybrids (the chlorambucil moiety was located at
160 position of the steroid) have been synthesized for site-directed chemotherapy
in breast cancer [150]. Marquis et al. [151] designed a steroid-nitrogen mustard
hybrid by linking nitrogen mustard moiety to a steroid.

Progesterone, when combined with chlorambucil, shows better biological results
when tested among the rats. On the other hand, alkylating agent sensitive tumors
do not respond well to the combination of melphalan and cyclophosphamide with
prednisolone. Interestingly, a phase III trial assessing the ester of chlorambucil
and prednisolone display better response rates on the treatment of patients with
advanced breast cancer compared to the two independent drugs [152].

Arsenou et al. [153] synthesized a series of steroidal ester of para-[/N, N-bis(2-
chloroethyl)amino]phenylacetic acid (PHE) and investigated the influence of 7-
carbonyl group in oxidized A’-steroids on the antileukaemic activity. Their results
showed that the steroidal part not only transports the nitrogen mustard moiety into
the cells, but also participates directly in the mechanism of antileukaemic action
in an unidentified fashion. They also synthesized a few steroidal derivatives of
chlorambucil and evaluated their antileukaemic activity in-vivo (against P388 and
L1210) and in-vitro on normal human lymphocytes [154]. Same results were
observed as for the PHE derivatives which indicate that the lactam function on the
B-steroidal ring led to potent hybrids but not as potent as the analogus 7-keto
derivatives.

Steroidal hybrids possessing a lactam B-ring as well as 17B-amide have been
synthesized; steroidal skeletons that carry a NHCO group are observed to be more
powerful than the analogous unmodified steroids bearing the same nitrogen
mustard moiety [155]. Steroidal ring A-lactam nitrogen mustard is found to be
active against mouse leukaemia L.1210 and mouse Sarcoma 180 [156].
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Steroidal esters obtained by reducing the A5 double bond of steroidal ester of
known hybrids containing the alkylating agent PHE or CHL (para-[N,N-bis(2-
chloroethyl)amino]phenylbutyric acid) also show potential antineoplastic
properties [157, 158]. Hecogenin and aza-homo-hecogenin steroids when linked
to PHE show important anticancer activity against Lewis lung carcinoma [159,
160]. The activity of regioisomers of aza-homo-hecogenin has been observed to
follow the order, ortho-> meta- > para- [161].

In summary, though earlier attempts to synthesize potent nitrogen mustards have
been successful in overcoming the problem of drug resistance, the last few
decades have witnessed a number of new nitrogen mustard derivatives
synthesized by incorporating variety of groups in the N atom of mustine;
incorporation of intercalating chromophore like 9-amino acridine has been
particularly successful. Nitrogen mustard derivatives of distamycin, tallimustine
are some other notably successful alternatives. CNS active chromophores have
been successfully conjugated to nitrogen mustard to synthesize new candidates
which can be used in cerebral tumour. In many cases conjugation of chlorambucil,
melphalan and other nitrogen mustards to steroids have also resulted in new
potent drugs. However, designing cell specific drugs still needs attention.

INTRODUCTION TO DFT AND DFRT
Density Functional Theory (DFT)

Computational chemistry is one of the most fascinating branches of chemistry that
is useful in resolving many problems in chemistry. It comprises of a wide variety
of methods developed over the last century. Density functional theory (DFT) is
one of the most widely used computational chemistry methods and has become an
increasingly popular tool for understanding many atomic-level intricate processes
and its application is growing rapidly. It is a powerful, successful and promising
approach to calculate molecular structures, total energy of the system, vibrational
frequencies, atomization energies, ionization energies, electric and magnetic
properties, reaction pathways, efc [162-165].

Formulation of the two most captivating theorems by Hohenburg and Kohn [166]
in 1964 helped DFT to become a full-fledged theory. The first HK theorem [167]
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states that the electron density, p(7) determines the external potential (i.e. due to
the nuclei), v(7). p(¥) also determines N, the total number of electrons, via its
normalization:

j p(F)dF =N (1)

N and v(7) determine the molecular Hamiltonian, A, which in turn determines
the energy of the system via the Schrodinger equation:

Hy =Ly 2)

v being the electronic wavefunction, p(7) determines the system’s energy and all
other ground state electronic properties. The Hamiltonian operator, /{ , involves the
three energy factors: the kinetic energy, the energy due to interaction with the
external potential (V) and the electron-electron interaction energy (V,, ), i.e.:

A 1 N =5 A N 1

21 0 |7 _;j‘
The second theorem restricts DFT to the studies of the ground states and
establishes the variational principle. It states that for a fixed external potential
v(7), if there is any positive definite trial density, p, coming from any N-electron
wavefunction such that | pt(F)dF = N, then it corresponds to a higher energy
state compared to the ground state, i.e. £ [ ,Ot] > E,.

The equation E[p,]= <l//t ‘I:I ‘l//t> > E, follows immediately from the Variational
theorem:

E [‘// ] 2 £ (4)
Trivial solution of the above equation and a good knowledge of the ground state
wavefunction can specify the energy of the excited state, much orthogonal to the
ground state.
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The two theorems proposed by Hohenburg and Kohn led to the discovery of the
fundamental equation of DFT:

S| E[p]-u(l p(7)dr -N)]=0 5)

The energy E does not change upon variation of optimal p(7), provided that
p(7) integrates at all times to N (in equation 1). x4 is the corresponding
Lagrangian multiplier and is also known as the chemical potential of a system. u
can also be written as the partial derivative of the system’s energy with respect to
the number of electrons at fixed external potential v(? ) :

uz(a—E] ©)
ON J(r)

E [ p] in equation 5 is independent of the external potential for a particular
system and can be inserted into the equation (only if its form is known) to obtain
the exact energy and density of that particular system. Thus, in equation 2, we can
define energy functional, £ [ p] as the sum of three terms:

E[p]=T[p]+Veu[P]+Vee[P] 7)

where, T[p] is the kinetic energy, V,, [p] is the interaction with the external
potential and ¥, [p] is the electron-electron interaction.

The kinetic and electron-electron functionals are unknown and the interaction
with the external potential is trivial:

V = Iﬁvext r f
ext[p] I p(’") r )

Kohn and Sham, [168] in 1965 have successfully come forward with their new
formulation of replacing the kinetic energy functional T[p] of the interacting
particles with that of non-interacting ones leading to the self-consistent Kohn-
Sham (KS) equation which is described by a single determinant wavefunction in
N orbitals, ¢, . KS formulation is structurally very much similar to that of Hartree-
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Fock formulation; the only difference being that the non-local exchange potentials
have been replaced by the local exchange-correlation potentials. Introduction of
the variational orbitals has helped them to calculate the kinetic energy of the
system with greater accuracy. Hence, we can determine the kinetic energy and
electron density of a non-interacting system from the (variational) orbitals:

4)

__ 1S 4l5
") 2IZ<¢I‘V ©)

N
p(F)=2|#] o)

where,

p(7) provides the solution to the exact ground state density of a system of a non-
interacting electron. Taking classical Coulomb interaction into account, ¥, [p] in
the electron-electron interaction, equation 7 can be rearranged to

E[p]=T[p]+V.u[P]+Vu[pP]+E.[P] (11)

where, E . [ p] is the exchange-correlation functional and is simply the sum of the
error made in using a non-interacting kinetic energy and the error made in treating
the electron-electron interaction classically.

Substituting the electron density of the energy functional (equation 11) in terms of
ground state density of a system with non-interacting electrons (equation 10) and
applying the variational theorem (equation 4), we find that the orbitals, which
minimize the energy of a system, satisfy the following set of non-linear equation
which describes the behaviour of non-interacting electrons in an effective local
potential:

L9t 2 () (7))
2 77|

(12)

If the exact energy functional is known, the orbitals yield the exact ground state

density via equation 10 and exact ground state energy via equation 11.
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The Local Density Approximation (LDA)

The exact form of the exchange and correlation energy represented by the fourth
term of equation 11, E [p] for a system is very challenging to calculate and
hence some approximations are necessary to solve it. The most trustworthy
approximation is the local density approximation (LDA). This approximation
helps in constructing approximate form of the exchange-correlation energy
functional for an inhomogeneous electron gas from the knowledge of exchange-
correlation energy of a homogeneous electron gas. As a result, the local
approximations can also be considered synonymous with functionals.

The local exchange-correlation energy per electron may be approximated as a
simple function of the local charge density (say&_.(p)), i.e. an approximation of
the form:

E. [p]=1p(F)ew(p(7))dr

(13)
where ¢ is the exchange-correlation energy density and is a function of density
alone. The £, term can be separated into E, and E
E.=E_+E, (14)
The solution to the first term of equation 14, ie. E, for a system with

inhomogeneous electron density by applying the approximation results of a
homogeneous electron gas gives us the expression: [169]

P
LDA4 :_é 3 ,7% 7
£ ] 4(”] [p()d ,

The exact correlation functional for a uniform electron gas is not known (except
in high and low density limits) but the correlation energy of this system has been
studied numerically and parameterized in the form of analytic functionals such as:
[170]
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EP[p]=—A[ p(1+a7, ) In| 1+ 1 - dr (16)

A(ﬂl’i% + Bor; +ﬂ3’74 +ﬂ4’7s2j

1

3
where, 7, = [i] and 4,a,,p,,0,,5; and S, are fixed parameters.
4p

The LDA predicts fairly accurate bond lengths and lattice constants, but severely
overestimates atomization energies of molecules and solids. For comparison, the
HF method, which is computationally more expensive than the LDA, predicts
bond lengths much less accurately than LDA and overestimates atomization
energies [171]. Various approaches, using different analytical forms for Ec, have
generated several LDAs for the correlation functional, including: Vosko-Wilk-
Nusair (VWN) [172] Perdew-Zunger (PZ81) [173] Cole-Perdew (CP) [174]
Perdew-Wang (PW92) [175] and many more.

The Generalised Gradient Approximation (GGA)

In foregoing discussion it is seen that LDA approximates the energy of a system by
taking the energy of local constant density into account, but unfortunately it fails in
some situations where the density undergoes rapid changes. The LDA uses the
exchange-correlation energy for the uniform electron gas at every point in the system
regardless of the homogeneity of the real charge density. But we encounter a very
different case for non-uniform charge densities. In the later case, the exchange-
correlation energy deviates significantly from that observed in the system with
uniform charge density. To overcome this problem some better approximations that
can express the deviation in charge density in terms of gradients and higher spatial
derivatives necessitates. Emergence of generalized gradient approximation (GGA)
[176, 177] has become helpful in solving the problem of slowly varying charge
density as it uses the gradient of the charge density to estimate this deviation
correctly. The typical form for a GGA functional is:

E.~[p(F)e.(p,Vp)dF a7
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The most popular and widely used GGA functional in solid state physics as well
as in computational chemistry is the Perdew, Burke and Ernzerhof (PBE) [178,
179] and its modified form RPBE [180] and revPBE [181]. In one of their
spectacular work, Perdew and co-workers [182, 183] have shown that it is
impossible for a GGA to perform well for certain pairs of properties, e.g., both for
atomization energies and lattice constants of solids.

Meta-GGA Functionals

Meta-GGAs are the most sophisticated semi-local functionals, incorporating
important exact conditions with almost the same computational cost as that of
GGAs. A meta-GGA functional in its original form includes the second derivative
of the electron density (the Laplacian); it depends explicitly on the semi-local
information in the Laplacian of the spin density or on the Kohn-Sham orbitals
through the kinetic energy density [184-186]. The functional is written in the

form:
~[o(7 v, v2 ~
Exc~jp(r)gxc<p, Vp|,V p,r)dr (18)
where the kinetic energy density 7 is:
1 ~ 2
T= —Z‘Vgoi‘
2 (19)

Some extensively used meta-GGA functionals are TPSSLYP1W, M06-L, M11-L,
etc. Unfortunately, the meta-GGA functionals have not yet touched the level of
accuracy of numerical performances when compared with the GGAs. As a matter
of fact, they can be considered as a significant improvement for some properties
only (e.g. thermochemistry) [187, 188], while they show very poor performances
when some other molecular parameters are considered (e.g., geometries) [189].

Hybrid Exchange Functionals

Axel Becke, in 1993, [190] has came forward with one of his spectacular findings;
the hybridization with Hartree-Fock (exact) exchange provides with a simple
scheme for improving results of molecular properties such as atomization
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energies, bond lengths and vibrational frequencies, which tend to be poorly
described with simple ‘ab-initio’ functionals [191].

The general principle lying behind this type of functionals is the mixing of
fraction of ‘exact exchange’ with GGA semi-local exchange. The exact exchange
energy functional is expressed in terms of the Kohn-Sham orbitals rather than the
density, so it is termed as an implicit density functional. A hybrid exchange-
correlation functional is usually constructed as a linear combination of the

Hartree-Fock exact exchange functional, £ Hr.,
1 o\ g g
EFF = ZH% —y, (), (%) drdr
| 12| (20)

One popular example of the hybrid exchange functional is the B3LYP (Becke,
Three Parameter Hybrid Functional, Lee-Yang-Parr) [192, 193] having the form:

A*Eflater +(1—A) *EfF +B*AEfecke +ECVWN +C*AEcnnn—local (21)

where 4, B and C are the constants determined by Becke via fitting the G1
molecule set. A number of different functionals have been proposed in the last
few decades [194-198]. However, it has been observed that a single functional is
not suitable for handling different situations, rather shows applicability to some
specific cases only. In contrast, the hybrid functionals show wide applicability
[199].

Density Functional Reactivity Theory (DFRT)

In the previous section we have discussed how density functional theory (DFT)
proves itself as one of the most precious theories in determining the energy of a
molecular system. But scientists are now interested to know some other chemical
properties of systems (based on its electron density) such as chemical potential,
chemical hardness, electrophilicity, nucleophilicity etc. that can well define the
reactivity of a system. So, in order to quantify molecular parameters researchers
have developed some quantum chemical models called reactivity descriptors. The
foundation stone of these descriptors has been established by Robert G. Parr and
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co-workers with the evolution of a second branch of DFT in 1970s and early
1980s, also called the conceptual density functional theory or density functional
reactivity theory (DFRT) [200-203]. The last few decades have seen the evolution
of many fundamental concepts, such as frontier molecular orbital (FMO) [204-
206], electron localized function (ELF) [207, 208], molecular electrostatic
potential (MEP) [209-213] and electronegativity equalization method (EEM)
[214-218] that are extensively used to explain the stereo- and regio- selectivity of
a wide variety of reactions. But these principles have remained empirical until the
great theory by Parr came into play and provided the theoretical basis of these
formal concepts.

Reactivity descriptors (DFT based) are some sort of mathematical parameters,
which help us to quantify chemical properties of a molecular system as a whole or
at some selective sites. Global reactivity descriptors (GRD) such as global
hardness (#), electrophilicity (w), chemical potential (u) efc. are used to define the
properties of a molecular system as a whole, whereas local reactivity descriptors
(LRD) such as Fukui functions (f), local softness (s) etc. are helpful in
understanding the behavior and reactivity of chemical species at a particular site.

Iczkowski and Margrave [219] expressed chemical potential (¢) as the negative
element of electronegativity (y). It is defined as the first derivative of energy with
respect to the number of electron(s) N at constant external potential, v(7).

__ _(5_E)
“=2= N )

Global hardness (7) [220] of an electronic system is defined as the second
derivative of energy (£) with respect to the number of electron(s) N at constant

(22)

external potential v(7).

n_i(aﬂ _i(a_ﬂ]
2 aNz V(?) 2 8N V(?)

where x is the chemical potential of the system.

(23)
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A discontinuity in the value of energy E with respect to the variation of N makes
it practically difficult to evaluate chemical potential () and chemical hardness
(n) [221-222]. In most of the numerical applications, x and # are calculated
using finite difference approximation [223] in terms of ionization potential (/P)
and electron affinity (E4). A practical approach for evaluating /P and EA can be
made from the plot of E versus N (29), generally these plots are not straight lines
but are convex upwards. The curvature defines # whereas the slope defines .

A
~—(IP+EA)/2

T
Ne——

Slope :(

d2

=

Curvature = [ ] ~ (IP - EA)

2

N
AN

~
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N N N
Number of electrons

29)

Using finite difference approximation # and x can be defined as:

IP—-FEA
77 =
2 24)

[1P+EA)
=
2 (25)

On the other hand, the ASCF method defines the terms, ionization potential (/P)
and electron affinity (£4) of the system as:
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IP=E, —E, 26)

EA=Ey -Ey, (27)

where, E, ,E, and E,,, are the energies of N-/, N and N+ electron systems
respectively.

Thus, once the energies of the neutral (), cationic (N *) and anionic (N )
systems are known, x4 and # values can easily be evaluated from the following
formulae

_ (Eyo —Eyv,)
: 2 (28)

— (EN—I +EN+1 _2EN)
2 (29)

Global softness (S) is defined as the inverse of #.

S:L

2n (30)

Using the finite difference approximation, S can be approximated as:

S = !
IP-EA (31)

Koopmans’ theorem [224] states that energy of HOMO (Highest Occupied
Molecular Orbital) is equal to the negative of the first ionization energy (/P) of a
molecular system. This theory is also formally useful for determination of
electron affinities (EA4), i.e. EA is equivalent to the negative of LUMO (Lowest
Unoccupied Molecular Orbital). Unfortunately, the Koopmans’ theorem does not
hold good for DFT as it is not an MO method. But, HOMO energy refers to the
eigenvalue of the highest occupied KS orbital in DFT. Hence, some
interpretations of the Kohn-Sham orbital energies are possible. Using Koopmans’
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theorem we can define /P and E4 in terms of energies of HOMO (¢,,,,,) and
LUMO (&, 0) as:

IP = ~¢&popmo (32)
EA=~¢&um0 (33)
and therefore x and 7 can be expressed as:

_ €1umo ~ Enomo

7 2 (34)

_ &1umo *+ € yomo
2 (35)

Parr and his co-workers [225] have proposed electrophilicity index (w) as a
measure of electrophilicity of a system,

2
©
2 (36)

w =

It is a measure of the capacity of a species to accept an arbitrary number of
electrons. Chattaraj et al. [226] have proposed a broader and very general local
reactivity descriptor called philicity, which encompasses electrophilic,
nucleophilic and radical reactions. Later, Roy ef al. [227, 228] have outlined the
limitations in applicability of this index and concluded that it may not always be
logical to approximate the global reactivity to the local reactivity of the
predominant site. Local electrophilicity index [229] is defined as:

© = 0f (37)

where, f," is the electrophilic Fukui function and f, is the nucleophilic Fukui
function. The condensed—to—atom variants for the atomic site & can be written as:

(24 a
=
@ /i ; o =+,—,0.
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where, o =+,— and Orefer to nucleophilic, electrophilic and radical attack
respectively.

However, the condensed Fukui function (CFF, a local reactivity descriptor) bears
a good significance in determining or in having a greater insight into a particular
atom [230]. For an atom ‘x’ in a molecule with N electrons in a constant external
potential, v(7), CFF can be obtained from finite different approximation as:

S =[p.(N,+1)— p.(N,)] for nucleophilic attack (38)
fr =[p,(Ny)— p, (N, —1)] for electrophilic attack (39)

where, p (N,), p,(N,+1) and p,(N,—1) are electronic population on atom x
in the molecule with NO, NO + I and N, —1 electrons respectively.

Another important local descriptor is the local softness, defined as:

sT=8f7 (40)

Toro-Labbé et al. [231, 232] have proposed a dual descriptor (Af), which is
defined as the difference between the nucleophilic and electrophilic Fukui
functions and is given by,

A=l -r] (41)

For Af > 0, the site is favored for nucleophilic attack, whereas for Af <0, the site
could hardly be susceptible to undertake a nucleophilic attack but may be favored
for an electrophilic attack. The associated dual local softness [233] is defined as:

As=|s—s] (42)
where, * =5/ and s =S f,

In recent past, these descriptors have been exploited to resolve a wide variety of
structure and reactivity issues that includes global as well as local reactivity of
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species, stability of systems, stability of conformations efc. and are well
documented [234-248].

COMPUTATIONAL STUDIES ON NITROGEN MUSTARDS

Though lots of experimental studies have been devoted to understand the action of
these drug molecules, proper understanding in molecular level has been possible
only with the help of methods of computational chemistry. Although not much of
computational work has so far been witnessed in this field, their importance in
this regard cannot be ignored.

Hamza et al. [249] performed quantum mechanical study of S-methylated forms
of sulfur mustard which can be considered as the pioneering computational work
on nitrogen mustards as well. They performed HF calculations on episulfonium
ion which shares a similar structure to that of 4z ion with an S-center. They also
calculated the energy barrier of the reaction pathway for bis-(2-chloroethyl)
methyl sulfonium dication (MeHD?"). Shukla ez al. [250] too have added some
good piece of information based on quantum chemical studies on mustine. They
have performed DFT and MP2 level of study on the reactions of mustine with
different nucleophilic centers in DNA bases and observed some noteworthy
results. The rate of the reaction is expected to be controlled by the magnitude of
the free energy of activation. Gibb’s free energy of activation of mustine when
reacted to guanine N7 is observed to be minimum (17.48 kcal/mol) followed by
adenine N3 (18.05 kcal/mol) and cytosine N3 (21.94 kcal/mol). This study has
attested the assumption of earlier experimental studies that nitrogen mustards
react preferentially at guanine N7. However, while studying a reaction, interaction
energy between the species should also be taken into account. They have observed
that the binding energy for alkylation at different sites is negative, confirming the
formation of stable adducts. However, results obtained for alkylation at O2 and
O4 of thymine, guanine O6 and cytosine O2 are not in favor of the formation of
stable adducts. Being a positively charged species, binding energy of Az" ion with
different nucleophilic sites in aqueous phase is found to be comparatively lower
than that in the gas phase. The trend in aqueous phase (at MP2/6-31+g(d) level of
theory) is observed to be: cytosine N3 > guanine N7 > guanine N3 > adenine N3
> adenine N1 > adenine N7. Thus, the calculations performed by Shukla et al.
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prove that guanine N7 and adenine N3 in DNA are the most probable sites of
alkylation by nitrogen mustards, which is in agreement with previous
experimental observations [251].

Hydrolysis of chlorambucil analogs have been studied by Pineda et al. [252].
Both the SN1 and SN2 reaction pathways are studied and it has been confirmed
that the reaction involves 4z" ion formation via a first order reaction, subjected to
an energy barrier of 24.8 kcal/mol (computed at M062X/6-31+g(d,p) level of
theory).

Ab-initio calculations on isolated GC pair performed by Vasilescu et al. [253]
have confirmed the preferential attack at guanine N7 over the other sites.
Thermochemical studies also confirm that alkylation of isolated GC base pair by
sulphur or nitrogen mustard is exothermic (AH < 0) and spontaneous (AG < 0).
Computed chemical potential (1) and the electrophilicity (w) clearly show that an
electronic charge flow from the nucleophilic GC base pair to the electrophilic
species episulfonium or aziridinium ion is involved.

Mann [254] has performed an explicit solvent phase ab-initio molecular dynamics
simulation to study the activation of nitrogen mustards: mustine and
phosphoramide mustard. The simulations have predicted a concerted reaction
occurring by means of neighbouring-group participation with the nearby
nucleophilic tertiary nitrogen. The calculated free energy of activation for Az" ion
formation for mustine has been observed to be 20.4 kcal/mol which is close to the
experimental value of 22.5 kcal/mol. These simulations also indicate a dynamic
transition state characterized by pronounced changes in the local water structure
within the first hydration shell. The complete mechanism involving solvent
reorganization, ionization of the C-Cl bond and internal cyclization of the 4z" ion
has been captured from elevated temperature simulations. Rate constants for Az"
ion formation from both mustine and phosphoramide mustard have been
calculated to be 26 s and 34.6 min respectively which are in agreement with the
experimental values [255, 256].

Recently, Polavarapu et al. [257] have studied the mechanism of alkylation of
guanine and adenine by mustine, melphalan and phenyl mustard using DFT. They
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have concluded that the rate of formation of 4z" ion of mustine is much preferred
to the other two aromatic nitrogen mustards. The free energy of activation of Az
ion formation for mustine has been calculated to be 9.26 kcal/mol which is
smaller as compared to those of melphalan and phenyl mustard (23.00 kcal/mol
and 22.53 kcal/mol respectively). Thus the 4z  ion formation by mustine is
kinetically favored over the other two. They have also showed that imminium ion
formation is thermodynamically favored but a huge amount of free energy of
activation (46 kcal/mol) prevents its formation. The free energy barrier for
guanine alkylation is comparable in all the cases (21.44 kcal/mol, 27.74 kcal/mol
and 28.88 kcal/mol for mustine, phenyl mustard and melphalan respectively).
However, in case of adenine alkylation these barriers are larger (27.79 kcal/mol,
35.33 kcal/mol and 33.01 kcal/mol for mustine, phenyl mustard and melphalan
respectively). This study supports earlier experimental observation that guanine
alkylation is preferred over adenine alkylation.

Our research group too have performed a number of studies on nitrogen mustards.
Especially the alkylation reaction and different properties of the nitrogen mustards
have been studied. We have made successful applications of DFT and DFRT to
make an in-depth study on alkylation of DNA bases, reactivity of Az" ion, and
stability of drug-guanine adducts etc. Few examples are discussed in section 1.4.

SOME APPLICATIONS OF DFT AND DFRT ON NITROGEN MUSTARDS

We have studied alkylation of DNA by nitrogen mustards. The kinetic as well as
thermodynamic driving force involved in DNA alkylation by nitrogen mustards
have been studied extensively, clarifying many doubts. Alkylation takes place in
cellular environment and it is an uphill task for a computational chemist to mimic
the cellular environments. Consideration of aqueous phase is a good
approximation to some extent. Nevertheless simple model chemistry cannot
represent the real situation. However, DFT studies provide a better understanding
of the factors that influence the rate of the reaction, free energy of activation,
conformation of the drug efc. Moreover, reactivity descriptors defined under
DFRT are extensively used to explain the reactivity pattern of the drug molecules,
intermediates and products formed during alkylation.
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During the alkylation process, the 4z" ion attacks guanine N7 and the positively
charged carbon center in Az ion accepts electron density from guanine N7. But
this is possible only when the LUMO is associated with the carbon centers in the
Az" ion. Therefore, the position as well as the energy of the LUMO of the Az" ion
becomes important. It has been observed that, the LUMO of the 4z ion (i.e., with
ZN3C2C1%60°) is localized away from the tricyclic ring (30).

C2

N3—C1

%

< cl

(30) Shape of the LUMO of the Az" ions

This position of the LUMO rules out the interaction between the Az" ion (C atoms
of the tricyclic ring in Az ion) and guanine (N7 center). Therefore, it becomes
important to study the factors that facilitate the alkylation reaction. Let us discuss
some of these factors based on our own research work. Most of our calculations
have been carried out with 6-31+g(d) and 6-31++g(d,p) basis sets with Becke
three parameter Lee, Yang and Parr correlation functionals (B3LYP) which is one
of the most popularly used hybrid functionals.

Case Study I: Structural Variation in Aziridinium Ion Facilitates Alkylation

The optimized structure of the 4z ion shows that it possesses a perfect tricyclic ring
with /N3C2C1=60° (30) (Please note that the N3-atom described here is referred to
as the N-atom of 4z" ion with C1 and C2 as the other two carbon centers in the ring.
The numbering has been done arbitrarily for the sake of simplicity and does not refer
to any scientific nomenclature and this numbering will be used in the rest of the
chapter). In this conformation the LUMO density is mostly confined within the
chloroethyl side chain. During mono-adduct formation, the N3-C1 bond of the Az"
ion rips apart and the Z/NCC bond angle becomes ~110° (in mono-adduct). We have
considered the mustine molecule, and an attempt has been made to analyze what
happens when the tricyclic ring rips apart. As the Z/NCC bond angle varies from 60°
to 120°, the shape of the LUMO of the 4z ion changes and shifts from the
chloroethyl side chain towards the ring carbon. A small variation (~5°) in ZNCC
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shifts the LUMO towards the ring carbon (31a) and at /NCC >110° most of the
LUMO concentrate at the C1 center (31b) [258].

(a) ZNCC=65° (b) ZNCC=110°

(31) Variation of the shape of the LUMO with Z/NCC bond angle

This study verifies that the variation of the shape of the LUMO during alkylation of
DNA by nitrogen mustards is an important factor for the alkylation reaction to occur.
Moreover, the two important principles, maximum hardness principle (MHP,
according to which, maximum hardness leads to maximum stability) and minimum
electrophilicity principle (MEP, most stable configuration possess minimum
electrophilicity) are also obeyed during structural variation (32) and maximum
hardness is observed in case of Az ion. However, as the /NCC bond angle increases,
hardness decreases, implying destabilization of the species according to MHP.
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(32) Variation in global hardness (W) and electrophilicity (®) (in kcal/mol) of the drug
intermediate with variation in Z/NCC bond angle at B3LYP/6-311++g(d,p) level in gas phase.
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Case Study II: Affinity of Aziridinium Ions Towards Different Nucleophiles

Apart from the DNA base pairs, there are plenty of nucleophilic centers present in
cellular environment that compete with the base pairs to interact with the Az" ion and
may interrupt DNA alkylation. So keeping this in mind, we have analyzed the
affinity of Az ion towards different nucleophiles using DFT and DFRT [259].
Interaction energy of the Az" ion towards different nucleophilic centers is one of the
key factors in determining how strongly the Az" ion may get diverted from its target
molecule (DNA bases). Two groups of nucleophiles are chosen for this purpose: one
bearing negative charges, (group I) and the other with neutral nucleophilic centers
(group II). BSSE (basis set superposition error) corrected interaction energies at
different level of theories in gas and aqueous phases are shown in Table 1.

Table 1: Interaction energy (in kcal/mol) of different nucleophiles with 4z" ion at three different
levels of theory in gas and aqueous phases

In gas phase In aqueous phase

B3LYP/6- | B3LYP/Aug- | B3LYP/6- B3LYP/6- B3LYP/Aug- | B3LYP/6-

31++g(d,p) | cc-pVDZ 311++g(d,p) | 31++g(d,p) cc-pVDZ 311++g(d,p)

Group I nucleophiles
Ccr -125.89 -126.20 -126.65 -4.51 -4.75 -7.00
NH; -198.42 -197.84 -198.87 -78.42 -77.38 -73.08
NHMe” -200.60 -200.09 -200.83 -85.27 -82.85 -80.91
NMe,’ -197.18 -195.67 -197.11 -87.48 -85.68 -85.05
OH -180.75 -180.65 -181.17 -52.61 -51.98 -49.81
OMe -177.16 -176.98 -177.29 -58.30 -57.11 -56.82
SH -146.63 -146.33 -147.40 -32.57 -31.96 -24.56
SMe -155.65 -154.75 -156.13 -39.16 -38.44 -20.24
MeCOO -141.20 -141.52 -141.33 -26.34 -26.40 -40.59
HCOO -137.15 -137.43 -137.45 -34.30 -34.30 -30.81
Group II nucleophiles

MeCOOMe | -0.45 -0.84 0.02 9.02 8.04 8.38
NH; -12.27 -12.37 -12.58 -23.09 -23.94 -19.39
NHMe, -24.56 -24.67 -24.80 -24.02 -24.10 -22.85
NMe; -26.28 -26.18 -26.43 -20.87 -20.60 -22.68
OC(NH,), | -41.58 -44.56 -40.93 -36.31 -37.05 -27.03
OCHNH, -22.35 -21.98 -21.77 -22.75 -23.37 -15.34
OCMe, -2.02 -1.60 -1.57 6.80 6.78 1.57
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OCMeNH, | -26.34 -25.70 -24.69 -21.39 -21.37 -15.69
SHMe -0.96 -0.49 -0.49 -1.71 -1.31 -1.70
SMe, -13.04 -12.35 -12.57 -7.24 -6.83 -8.39

In case of group I nucleophiles, interaction energies in gas phase are found to be
comparatively higher than in aqueous phase. Presence of charges on the
nucleophiles as well as on the Az" ion makes them stable in aqueous phase. Thus,
it becomes easier for these species to remain in unreacted form in aqueous phase.
In aqueous phase, the nucleophiles (group I) bearing N-centers exhibit the highest
interaction energies whereas Cl™ ion shows the lowest. The order of interaction
energies among the group I nucleophiles is found to be: N-center > O-center >
S-center > CI, with an exception in case of O-center in carboxylic group, which
shows low interaction energy due to delocalization of the charge over the -COO™
group. Higher affinity of the nucleophiles with N-centers suggests that Az" ion is
more prone to attack at different N-centers (preferentially at tertiary N-centers)
present in DNA, RNA and in different protein molecules. Exceptionally low
affinity of CI ions towards the 4z" ion explains why nitrogen mustards form Az"
ion by releasing CI™ ion. The Az" ion exhibits a weak interaction with the group II
nucleophiles, both in gas as well as in solvent phases. Some of them even show
repulsive interaction (positive interaction energy). We have not observed any
sharp variation in the values of the interaction energies on moving from gas to
aqueous phase for group II nucleophiles. Nucleophiles with N-centers show
strong interactions in both phases, whereas an exactly opposite case has been
observed in case of nucleophiles with S-centers.

Interaction of the Az" ion and the nucleophiles resulted in a strong covalent bond
formation; shorter (and hence stronger) bond formation has been observed in case
of group I nucleophiles (especially with those having N-centers) compared to the
group II nucleophiles.

In case of group I nucleophiles, some linear relationship between the reactivity
descriptors and interaction energies are observed, (33a-d) but no such relationship
has been observed in case of group II nucleophiles.
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(33) Variation of interaction energy with HOMO energy, global hardness, chemical potential and
electrophilicity of group I nucleophiles at B3LYP/6-31++g(d,p) level of theory in gas and aqueous
phases (all parameters are in kcal/mol).

Case Study III: Effect of External Electric Field on the Reactivity of the
Aziridinium Ion

During its lifetime, the 4z" ion has to pass through different environments ranging
from non-polar (within the cell membrane) to polar environments (in extra- and
intra- cellular fluids, blood efc.) before interacting with guanine (in DNA). These
polar environments consist of charged particles and are expected to exert some
electric fields of different magnitude on the species. Accordingly, we studied the
effect of external electric fields on Az ion of mustine and observed its behaviour
using DFRT [260]. It has been noticed that in absence of external electric field the
LUMO is mostly located at the chloroethyl side chain (34a). As the electric field
is applied, the position of the LUMO shifts towards the direction of the applied
field, and this shifting of LUMO is observed to depend on the magnitude of the
applied field. For instance, when the applied field value is 0.10 V/A, (34b), the
LUMO starts shifting towards the direction of the external electric field and at a
field value of 0.30 V/A, a large portion of the LUMO gets shifted, (34d). At
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higher field values, say greater than 0.50 V/A, almost complete shifting of the
LUMO is observed (34e-f).

Thus, a cytoplasmic environment may shift the LUMO significantly towards the
ring carbon which would facilitate alkylation. Hence external electric field is also
an important factor that affects the shape and energy of the LUMO. Moreover,
reactivity of the A4z" ion varies with the application of external electric field (35a-
b) and MHP as well as MEP are obeyed.

(a) Field=0.0 V/A (b) Field=0.10 V/A

(¢) Field= 0.50 V/A () Field= 0.60 V/A

(34) Shapes of LUMO in the presence of external electric field applied along z axis.
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(35) Variation of LUMO energy, global hardness (0) and electrophilicity (@) with external electric
field along x axis (values of LUMO energy, hardness and electrophilicity are in kcal/mol and field
strength is in V/A)

Case Study IV: Variation of Reactivity During Alkylation

Another study comprises of the variation of reactivity/stability of the tricyclic Az
ion of mustine with the Z/NCC bond angle of the tricyclic ring during alkylation
of guanine [261]. We followed the path of the reaction along the intrinsic reaction
coordinates (IRC) and observed a sharp variation in the reactivity of the Az" ion
around the transition state (TS). Along the reaction pathway, configuration of the
Az" ion changes; at d > 2.30A, (d is the distance between C1 center of Az" ion and
guanine N7) the 4z ion retains its typical tricyclic structural parameters with
ZN3C2C1~ 60.0° and both N-C (ring carbon) distances are equal to 1.59 A (36a).
As‘d’ gets shorter, the two species come within the interaction range and at
d ~2.30 A, the tricyclic ring starts to open up. The TS of the reaction is located at
d=2.12 A, (36b) and in mono-adduct 4 = 1.48 A.

CI-N3=1.59 A C1-N3=1.89 A

CI-N7=230 A CI-N7=2.12 A

Z/C1C2N7=65.1° Z/C1C2N7=79.9°
(a) (Reactant) (b) (TS)
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C1-N3=2.45A
C1-N7=1.48 A
ZCI1C2N7=109.4°

(¢) (Product)
(36) Variation of the structure of the Az" ion during mono-adduct formation (at B3LYP/6-31+g(d)

level of theory)
Shifting of the LUMO from the chloroethyl side chain towards the tricyclic ring
with the variation of ‘d’ is shown in (37). Around the TS, larger part of the
LUMO is shifted towards the ring carbon. Moreover, along the IRC, a drastic
change in the local reactivity parameters of carbon centers of the A4z ion is
observed (38).

LUMO energy of Aziridinium

26 24 22 20 18 16 14
d(A)

(37) Variation of shape and energy of LUMO (in kcal/mol) of Az" ion along the IRC.
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Case Study V: Mono- and Bis-Alkylation of DNA by Nitrogen Mustards

It has become cumbersome in some of the cases to define the reaction possibilities
using only the global reactivity descriptors as it is a site specific reaction; it is thus
advisable to study the reactivity patterns of those sites using the local reactivity
descriptors. Local parameters such as Fukui function (f"), local softness (s) and
local philicity (o”) are some tools handy for this purpose [262]. Here we have
studied the formation of mono- as well as cross-linked adducts by a few nitrogen
mustards and analyzed the local reactivity pattern. Of all the drugs chosen for the
study ie. mustine, melphalan, chlorambucil, phosphoramide mustard,
bendamustine, uracil mustard and spiromustine, Az" ion of mustine exhibits the
highest tendency for mono-adduct formation whereas second aziridinium ion,
(4z*") (Scheme 1) of uracil mustard exhibits maximum tendency for cross-linked
adduct formation. The extents of solvent effect measured in terms of free energy
of solvation (AGs,) suggest that the extent of the effect depends upon the charge
present on the species; free energy of solvation of 4z*" is higher than that of Az" .
Stability of mono- and cross-linked adducts has been measured in terms of global
hardness which predicts a different trend in both the cases. Interaction energy
happens to be of cardinal importance for a drug molecule. Though in gas phase,
interaction energy in case of cross-linked adducts are much higher than in mono-
adducts; in aqueous phase they are very close to each other, Table 2. Moreover,



Density Functional Studies of Bis-alkylating Nitrogen Frontiers in Computational Chemistry, Vol. 2 169

because of higher charge (+2), cross-linked adducts acquire more stability in
aqueous phase compared to mono-adducts.

Table 2: Interaction energies (in kcal/mol) of mono- and cross-linked adducts in gas and aqueous
phases (within bracket) at B3LYP/6-31+g(d) level of theory

Drug molecule | AE;ymono AGyq AEint.cross AGyq
Mustine -46.83 (-21.11) -57.73 -62.39 (-21.43) -138.32
Melphalan -47.86 (-23.96) -66.48 -64.67 (-27.12) -140.58
Chlorambucil -48.74 (-29.41) -63.88 -61.07 (-27.49) -141.90
Bendamustine -43.54 (-24.37) -69.49 -60.74 (-26.73) -141.56
Phosphoramide | -57.89 (-37.55) -69.79 -79.17 (-38.99) -141.76
mustard

Uracil mustard -55.61 (-26.94) -66.32 -71.61 (-30.14) -146.29
Spiromustine -51.27 (-25.72) -59.12 -68.69 (-29.40) -134.04

Case Study VI: Alkylation of DNA Base by Formononetin Derivatives of
Nitrogen Mustard

Recently, we have analyzed the thermodynamic and kinetic aspects of guanine
alkylation by nitrogen mustard derivatives of formononetin (39) using DFT [263].

Cl
RO (6]
N\/\
Cl
(0]
|
CHs

39
Free energy of activation of the 4z" ion and adduct formation by formononetin
nitrogen mustard derivatives are comparable to those of chlorambucil and
melphalan. Results confirm that Az" ion formation by the nitrogen mustard
derivatives of formononetin is quite sluggish as compared to that of mustine.
Higher energy barrier in the drug-guanine mono-adduct formation over Az" ion
formation provides evidence of the later being kinetically favored.
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Thermodynamic studies suggest that Az ion formation is endothermic but drug-
guanine adduct formation is exothermic. These drug molecules also exhibit
significant interaction with guanine moiety (in DNA). It is worth mentioning that
the results illustrate the applicability of MHP and MEP.

CONCLUDING REMARK

In summary, the nitrogen mustard derivatives are excellent DNA alkylator and
have received extensive application in cancer chemotherapy over the last fifty
years. This class of drug molecules inhibits cell growth by formation of
interstrand cross-linking. Since its discovery, several hundreds of such molecules
have been synthesized, and many of them are found to exhibit potent anticancer
activity. Though the mechanism of action of these molecules has been properly
explained, elucidation at molecular level is of utmost importance to make an
exclusive in-depth understanding. In comparison to a large number of
experimental studies, only a few computational studies have so far been
performed on these drug molecules. In recent years DFT and DFRT have been
successfully applied to understand the mechanism of DNA alkylation, effect of
solvent on the alkylation process, stability of the chemical species involved in the
reaction efc. In near future these kinds of studies may become helpful in
developing new and more potent nitrogen mustards.
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CHAPTER 5

From Conventional Prodrugs to Prodrugs Designed by Molecular
Orbital Methods

Rafik Karaman"

Bioorganic Chemistry Department, Faculty of Pharmacy Al-Quds University,
P.O. Box 20002, Jerusalem, Palestine

Abstract: In this chapter we attempt to present a novel prodrug approach which is
based on enzyme models that have been advocated to understand the mechanism by
which enzymes catalyze biochemical transformations. The tool exploited in the design
of novel prodrugs is computational calculations using molecular orbital (MO) and
molecular mechanics (MM) methods and correlations between experimental and
calculated rate values for some intramolecular processes. In this approach, no enzyme is
needed to catalyze the intraconversion of a prodrug to its active parent drug. The
conversion rate is solely determined by the factors affecting the rate limiting step in the
intramolecular (interconversion) process. Knowledge gained from unraveling the
mechanisms of the studied enzyme models (cyclization of Bruice’s dicarboxylic semi-
esters and acid-catalyzed hydrolysis of Kirby’s N-alkylmaleamic acids) was exploited
in the design. It is believed that the use of this approach might eliminate all
disadvantages related to prodrug interconversion by the metabolic approach (enzyme
catalyzed process). By utilizing this approach we have succeeded to design novel
prodrugs for a number of commonly used drugs such as the anti-bleeding agent,
tranexamic acid, the antihypertensive agent, atenolol, the pain killer agent, paracetamol,
and the antibacterial agents, amoxicillin, cephalexin and cefuroxime. /n vitro studies
have shown that in contrast to the active drugs (atenolol, paracetamol, amoxicillin and
cephalexin) which possess bitter sensation, the corresponding prodrugs were bitterless.
Hence, it is expected that patient compliance especially in the pediatric and geriatric
population will be significantly increased.

Keywords: Ab initio calculations, DFT calculations, enzyme models, molecular
mechanics calculations, prodrugs, prodrugs design.

INTRODUCTION

Drug discovery is considered as a lengthy interdisciplinary endeavor. It is a multi-
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step process that commences with target and lead discovery, followed by lead
optimization and in vitro and in vivo studies to evaluate if a chemical entity
complies with a number of pre-set criteria to start clinical development. The
number of years it takes to introduce a drug to the pharmaceutical market is
estimated between 10-12 years with a cost of more than $0.9 billion dollars [1, 2].

In the past few decades the pharmaceutical industry has been subjected to
considerable alterations in terms of improving drug drawbacks that are related to
pharmacokinetic (pharmaceutical and biological) performance of existing drugs
which may hinder drug development process [3-7]. Overcoming the undesirable
physicochemical properties of a number of marketed drugs can be achieved
through the development of new chemical entities with desirable efficacy and
safety. However, this is an expensive and time consuming process that needs a
screening of thousands of molecules for biological activity. Over the past two
decades, an increased recognition that the discovery of potent therapeutics
involving design of new entities, possess “drug-like” properties and high binding
affinity for their biological targets, has been established. The drug-like properties
consist of solubility, permeation across barriers and metabolic and excretory
clearance [3-7].

An adequate balance of the physicochemical properties enables a drug moiety to
attain and maintain the required systemic concentrations for achieving therapeutic
effects via optimum absorption, distribution, metabolism, and excretion (ADME)
processes. A drug moiety that is poorly absorbed, rapidly metabolized or rapidly
excreted will not have the ability to attain and provide an efficient therapeutic
potential. Such a drug will require much higher doses to achieve sufficiently high
systemic concentrations for efficacy, which may not be beneficial in some cases
or may cause side effects in others. Thus, good drug-like properties are often
defined as physicochemical properties of a drug that enable it to circulate through
physical, biochemical, and physiological barriers imposed in the physiological
environments. The pharmaceutical properties of a drug candidate are optimized by
de novo design which involves selections of appropriate physicochemical
attributes into the drug moiety or through formulation of the drug candidate with
pharmaceutical or biochemical agents that can improve the physicochemical
properties. Another important approach that has been used to impart good
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pharmaceutical properties is a design of a prodrug moiety that transiently modifies
physicochemical properties of a drug to overcome a shortcoming. Hence, it
becomes much more feasible to modify and improve the properties of existing
drugs through exploring the prodrug approach for eliminating the undesirable
properties and to increase the commercial life-cycle and patentability of the
concerned drugs. The prodrug approach is a promising and well established
strategy for the development of new entities that possess superior efficacy,
selectivity and reduced toxicity. Hence an optimized therapeutic outcome can be
accomplished using this approach. Approximately, about 10% of all worldwide
marketed medicines can be categorized as prodrugs, and in 2008 alone, about
33% of all approved small molecular weight drugs were prodrugs, and this
signifies the success of the prodrug approach [5-7].

A complete understanding of the physicochemical and biological behavior of a
drug candidate is required when modifying the drug’s absorption, distribution,
metabolism and elimination (ADME) properties [8-12]. This approach consists of
comprehensive evaluation of drug-likeness involving prediction of ADME
properties which can be accomplished using in vitro and in vivo data obtained
from tissue or recombinant material, from humans, and pre-clinical species. In
addition, in silico or computational predictions of in vitro or in vivo data which
involves an evaluation of various ADME properties, using computational methods
such as quantitative structure activity relationship (QSAR) or molecular
modeling, are required as well [1-7].

Studies have shown that high attrition rates in the drug development process are
attributed to poor pharmacokinetics and toxicity, and researchers have reached to
the conclusion that these issues should be heavily considered as early as possible
in the drug discovery process in order to improve the efficiency and cost
effectiveness of the drug candidate [13].

Therefore, the goal is to design drugs having an efficient dissolution and
permeability to be transferred to the blood circulation (absorption) and efficiently
reach their target (distribution) and to be sufficient stable to survive the
physiological journey (metabolism) and to be eliminated in a reasonable time
(elimination).
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In order to achieve a drug’s success in reaching the biological target the following
drug’s physicochemical properties are required: (1) chemical stability in aqueous
solutions, such as stomach, intestine and blood circulation environments. (2)
Metabolic stability; the drug must survive digestive and metabolic enzymes (liver)
and any metabolites (product of drug metabolism) should not be toxic or
ineffective. Metabolic enzyme activity (cyctochrome P450’s) varies from
individual to individual can be affected by other chemicals, such as grapefruit
juice which inhibits activity; cigarette smoke and brussel sprouts which enhance
it; other drugs may inhibit or promote P450 enzymes. For example, antibiotics can
act as P450 inhibitors; slows the metabolism of other drugs by these enzymes.
Phenobarbitone stimulates the P450 enzymes; accelerating the metabolism of
warfarin (anticoagulant) and making it less effective. Cimetidine (antihistamine)
inhibits the P450 enzymes; slowing the metabolism of warfarin (anticoagulant).
St. John’s wort (herbal medicine for mild to moderate depression) promotes P450
enzymes; decreasing the effectiveness of contraceptives and warfarin.
Anticoagulants are bound by plasma protein in the blood, but aspirin displaces
them, which can lead to a drug overdose, and (3) Successful absorption; diffusion
across membrane (solubility and permeability; size, H-bonding). Too hydrophilic
drugs can’t cross membranes; more easily excreted by kidneys and too
hydrophobic drugs have poor water solubility, poorly absorbed from GI tract
because they coagulate in fatty globules [3-4].

PRODRUG OVERVIEW

The prodrug term involves chemically modified inert compound which upon
administration releases the active parent drug to elicit its therapeutic activity
within the body. Since few decades, prodrug strategy has increasingly being
developed to overcome undesired drug physicochemical properties. Generally,
prodrugs consist of a promoiety that is removed by enzymatic or chemical
reactions, while other prodrugs release their active drugs after molecular
modification such as an oxidation or reduction reactions. In some cases, two
active drugs can be attached together in a single molecule called a codrug. In a
codrug, each drug acts as a linker for the other. It is important to ensure that the
prodrug should be pharmacologically inactive, rapidly converted to its active drug
and a non-toxic moiety [14, 15]. Nearly 55 years ago, Albert introduced the
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prodrug term for the first time in his book ‘selective toxicity’. The first prodrug
was not originally designed as a prodrug, but its nature was determined later.
Earlier examples of compounds fulfill the classical criteria of prodrug were
acetanilide and phenacetin, which exhibit their activities after being metabolized
within the body [16]. Acetanilide is an antipyretic agent that entered the clinical
use in 1886. It undergoes metabolism (aromatic hydroxylation) to paracetamol, in
a similar manner to that of phenacetin which produces paracetamol via O-
dealkylation [17].

In the late nineteenth century a chemist, Felix Hoffman at Bayar-Company,
synthesized the antipyretic agent Aspirin (acetylsalicylic acid), which was
introduced for the first time in clinical practice in 1899; it can be considered a less
corrosive prodrug form of salicylic acid to minimize the gastric irritation and
ulcerogenicity associated with salicylic acid. However, it remains a matter of
debate whether aspirin is a true prodrug or not [18]. Since then many prodrugs
were synthesized to overcome many pharmaceutical and pharmacokinetic
problems such as, low bioavailability by increasing or decreasing lipophilicity of
the parent drug, site selectivity for higher absorption and less toxicity, short
duration of action to increase patient compliance, rapid metabolism to increase
oral bioavailability and masking bitter sensation of commonly used drugs, which
is crucial for geriatric and pediatric patient compliance.

Prodrug design is an efficient approach used to overcome these problems. The
lipophilicity of poorly permeable drugs can be increased by linking the drug to a
lipophilic linker such that it can be used for oral, ocular or local drug delivery.
Prodrugs can be also used to increase aqueous solubility by linking the drug to
polar or ionizable groups. In addition, prodrugs use has succeeded to overcome
site selectivity problems, which can be achieved by targeting a specific enzyme or
receptor, such as targeting an enzyme that is over expressed in tumor cells.
Further, mAbs have been used as ligands to transport prodrugs to tumor cells.
They are designed as drug-antibody conjugate or antibody enzyme conjugate [19],
targeting membrane transporters is utilized in order to increase absorption such as
in the case of valacyclovir prodrug. Several prodrugs have been used to prolong
duration of action, such as buprenorphine decanoate and fluphenazine decanoate
ester prodrugs [20]. Prodrugs of naltrexone, nalbuphine, estradiol and dopamine
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are another example of prodrugs to increase bioavailability of drugs that are
susceptible to presystemic metabolism, by protecting the groups involved in
metabolism [21]. An example for dopamine prodrug to increase bioavailability is
shown in Fig. 1. Prodrugs also are applied to decrease pain at injection site by
making drugs more water soluble. Masking bitter taste and improvement of odor
are important applications of prodrugs to increase patient compliance. Taste
masking is achieved by blocking chemical groups that are involved in the drug
interaction with bitter taste receptors.

EtO. (o]
HO \~’/ ch
HO NH,
o N o
H
Dopamine EtO o

Figure 1: Chemical structures of docarpamine [N-(N-acetyl-L-methionyl)-O, O-bis
(ethoxycarbonyl) dopamine), a pseudopeptide prodrug of dopamine and dopamine.

INTRAMOLECULAR PROCESSES USED FOR THE DESIGN OF
POTENTIAL PRODRUGS

Most of the prodrugs that are in clinical use require enzymatic catalysis in order to
interconvert into their corresponding parent drugs; they are typically esters of
drugs containing carboxyl or hydroxyl groups, which are readily interconverted
by esterase catalyzed hydrolysis [22]. However, applying enzymatic activation as
mentioned before suffers many disadvantages such as high chemical reactivity
that precludes either liquid or solid formulation of the prodrug or low chemical
reactivity, resulting in low in vivo concentration level of the active drug.
Therefore, the development of prodrugs through non-enzymatic pathways has
emerged as an alternative approach in which prodrug activation is not affected by
inter- and intra-individual variability that has consequences on the enzymatic
activity. In particular, cyclization-activated prodrugs have been capturing the
attention of medicinal chemists since more than two decades.

Many different strategies have been exploited in recent years for the development
of intramoleculary-activated prodrugs using the cyclization pathways that control
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the rate of the drug release from its corresponding prodrug. These strategies
include: (1) cyclization reactions that release the active drug as the cyclization
product, (2) cyclization reactions involving elimination of the parent drug and (3)
cyclization reactions which preced by an enzymatic reaction that generates the
internal nucleophile (also called two-step activation). A number of reviews
addressing these approaches have previously been published by Shan et al. [23],
Testa & Mayer [24] Wang et al. [25], VinSova and Imramovsky [26] and Stella
[27]. Another interesting review on anticancer prodrugs selectively activated by
elimination and cyclization reactions was published by Papot et al. [28] in 2002.

Additionally, a chapter on cyclization-elimination strategies for prodrug activation
has recently published [29].

Another example of intramolecular process that has been utilized for prodrug
development is the “conformation lock™ (trimethyl lock system). Borchardt and
co-workers developed two-step activation prodrugs by carriing out covalent
attachment of model drugs to the carboxyl group of the hydrocinnamic acid
moiety while masking the o-hydroxyl substituent as a precursor structure sensitive
to either reductases [30-32], esterases [33-35] or phosphatases [36].
Consequently, the o-hydroxyl group could be released in a first enzymatically-
promoted transformation, after which fast lactonization would lead to drug release

(Fig. 2).

In 1985, Bundgaard and co-workers proposed pilocarpine prodrugs based on
pilocarpic acid double esters [37].The latter were shown to work as prodrugs of
pilocarpine both in vitro and in vivo and, in aqueous solution, to undergo a
quantitative and apparently specific-base-catalyzed lactonization to pilocarpine.
This process was based on an initial ester hydrolysis step that leaves a hydroxyl
nucleophile free to attack the benzyl ester moiety, thus promoting the final
cyclization-elimination reaction [37].

Molecular modeling studies of a series of pilocarpic acid mono- and diester
prodrugs by Konschim et al. have been done to gain an understanding of their
general physicochemical properties. Molecular structures and conformers have
been determined with molecular mechanics and quantum chemical AM1
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calculations [38]. However, no rate calculation has been done to calculate
(predict) the effect of the structural features on the drug’s release.
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Figure 2: An illustration of the “trimethyl lock™ concept used for the design of two-step prodrugs.

In this chapter, a novel prodrug approach, by which the intraconversion of a
prodrug to its parent drug is determined only on the structure features of the linker
(promoiety), discussed implies prodrugs design based on enzyme models that
have been advocated to understand how enzymes work. The tool used in the
design is computational approach consisting of calculations using a variety of
different molecular orbital such as DFT and ab initio, and molecular mechanics
methods and correlations between experimental and calculated rate values
(activation energy) for some intramolecular processes that were utilized to
understand the mechanism/s by which enzymes exert their high catalytic
effeciency. In this approach, there is no need to enzyme catalysis of the intra-
conversion of a prodrug to its active drug. The release rate of the active drug is
solely determined by the factors affecting the rate limiting step of the prodrug
intraconversion process. Knowledge gained from the mechanisms of the
previously studied enzyme models was used in the design.

It should be worth noting that the use of this approach might eliminate all
disadvantages that are associated with prodrug interconversion by enzymes. The
bioconversion of prodrugs is perhaps the most vulnerable link in the chain,
because there are many intrinsic and extrinsic factors that can affect the process.
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For example, the activity of many prodrug activating enzymes may be varied due
to genetic polymorphisms, age-related physiological changes, or drug interactions,
leading to adverse pharmacokinetic, pharmacodynamic, and clinical effects. In
addition, there are wide interspecies variations in both the expression and function
of the major enzyme systems activating prodrugs, and these can pose some
obstacles in the preclinical optimization phase.

ENZYME MODELS USED IN THE PRODRUG DESIGN

Over the past few decades, pioneer studies by several organic chemists and
biochemists, such as Bruice, Bender, Jencks, Menger, Kirby and Walesh, have
contributed much for understanding how enzymes catalyze biochemical reactions
[39-52].

The consensus today is that the principal of enzyme’s catalysis is based on both,
the catalysis by functional groups and the ability to reroute intermolecular
reactions through alternative pathways by which substrates can bind to
preorganized active sites. Moreover, studies have demonstrated that rates
enhancement by enzymes can be driven by a number of factors: (1) covalently
enforced proximity, such as in the case of chymotrypsin, (2) non-covalently
enforced proximity, as seen in the catalysis of metalloenzymes, (3) covalently
enforced strain, and (4) non-covalently enforced strain, which has been researched
on models that mimic the lysozyme enzyme.

In general, rates of enzymatic reactions are more than 10'°-10" -fold the
corresponding non-enzymatic bimolecular counterparts. For example, catalyzed
reactions by orotidine monophosphate decarboxylase are enhanced by 10'’-fold
whereas that catalyzed by cyclophilin are accelerated by10°-fold. The huge rates
enhancement brought about by enzymes is as a result of the substrate binding
within the confines of the enzyme’s active site. The binding energy of the
resulting enzyme substrate complex is the main driving force to catalysis. It is
assumed that in all enzyme catalyzed biotransformation, binding energy is used to
overcome physical and thermodynamic factors imposing barriers to the reaction
(free energy) such as: (i) the change in entropy, in the form of the freedom of
motions of the reactants in solution; (ii) the hydrogen bonding around
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biomolecules in aqueous solution; (iii) a proper alignment of catalytic functional
groups on the enzyme and (iv) the distortion of a substrate that must occur before
the reaction commences [39-53].

The extraordinary high efficiency of enzymes depends on a combination of few
factors that have been recognized but none of them was fully understood. Despite
the growing progress reached in understanding enzyme catalysis a number of
important factors still to be investigated. The high rates of intramolecular
reactions are fascinating for chemists because they are reminiscent of the
efficiency of enzyme catalysis and it is widely believed that a common source is,
at least for a significant part, responsible both effects. The similarity between
intramolecularity and enzymes has encouraged a number of chemists and
biochemists to design chemical models based on intramolecular reactions
involving two reactive centers in order to reveal the mode and mechanism of
enzymes catalysis. Over the past 50 years suggestions have been proposed from
attempts to interpret changes in reactivity versus structural variations in
intramolecular systems. Among those proposals: (1) Koshland ‘orbital steering’’
which suggests a rapid intramolecularity arises from a severe angular dependence
of organic reactions as has been shown in the lactonization of hydroxy acids [44];
(2) ““proximity’’ in intramolecular processes (near attack conformation) model as
advocated by Bruice and demonstrated in the lactonization of di-carboxylic acids
semi-esters[45-47]; (3) ‘‘stereopopulation control’” based on the concept of
freezing a molecule into a productive rotamer as presented by Cohen [48-50], (4)
Menger’s ‘‘spatiotemporal hypothesis’’ which postulates that the rate of reaction
between two reactive centers is proportional to the time that the two centers reside
within a critical distance [51-55] and (5) Kirby’s proton transfer models on the
acid-catalyzed hydrolysis of acetals and N-alkylmaleamic acids which
demonstrated the importance of hydrogen bonding formation in the products and
transition states leading to them [56-64].

Studies on intramolecularity have played a fundamental role in elucidating the
chemistry of the groups involved in enzyme catalysis as well as in unraveling the
mechanisms available for particular processes. Thus, it is believed that these
studies have the potential to provide an adequate understanding of how efficiency
depends on structure in intramolecular catalysis which in turns could shed light on
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related problems in enzyme catalysis, and could be potentially used as prodrugs
linkers.

COMPUTATIONAL METHODS BACKGROUND

The use of computational chemistry for geometries and energies of ground and
transition states calculations has become a daily tool for organic, bioorganic and
medicinal chemists alike. Computer science principles are utilized to aid in
solving chemical problems by incorporating theoretical chemistry results into
efficient computer programs to calculate the geometries and physical and
chemical properties of molecules [65].

Kinetics and thermodynamics calculations for biological systems having
pharmaceutical and medicinal interests are considered a challenge to the health
community. Computational calculations utilizing quantum mechanics (QM) such as
ab initio, semi-empirical and density functional theory (DFT) methods, and molecular
mechanics (MM) methods are increasingly being used and broadly accepted as
reliable tools for the prediction of potential drugs and prodrugs alike [65].

The above mentioned computational methods can handle both static and dynamic
situations. In all cases the computer time, memory and disk space increase
drastically with the studied system’s size. 4b initio methods generally are useful
only for small systems. They are based entirely on theory from first principles.
The ab initio molecular orbital methods (QM) such as HF, G1, G2, G2ZMP2, MP2,
MP3 and MP4 are based on rigorous use of the Schrédinger equation with a
number of approximations. Ab initio electronic structure methods have the
advantage that they can be made to converge to the exact solution, when all
approximations are sufficiently small in magnitude and when the finite set of
basis functions tends toward the limit of a complete set. The convergence,
however, is usually not monotonic, and sometimes the smallest calculation gives
the best result for some properties. The disadvantage of ab initio methods is their
time-consuming cost [66-67].

Other less accurate methods are the semi-empirical because they make many
approximations and obtain some parameters from empirical data. The semi-
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empirical quantum chemistry methods are based on the Hartree-Fock formalism
and they are very important in computational chemistry for treating large
molecules where the full Hartree-Fock method without the approximations is too
expensive. Within the framework of Hartree-Fock calculations, some pieces of
information (such as two-electron integrals) are sometimes approximated or
completely omitted. In order to correct for the loss of two-electron integrals, semi-
empirical methods are parameterized, that is their results are fitted by a set of
parameters, normally in such a way as to produce results that best agree with
experimental data, but sometimes to agree with ab initio results. Semi-empirical
calculations are much faster than their ab initio counterparts. Their results,
however, can be very wrong if the molecule being computed is not close enough
to the molecules in the database used to parameterize the method. The most used
semiempirical methods are MINDO, MNDO, MINDO/3, AM1, PM3 and SAM1
[68-71]. Calculations of molecules exceeding 70 atoms can be done using such
methods (the number of atoms to be calculated is dependent on the computer
efficiency used).

Another commonly used quantum mechanical method in chemistry and physics to
study the electronic structure, especially the ground state of many- systems, in
particular atoms, molecules, and the condensed phases is the density functional
theory (DFT). With this theory, the properties of many systems can be predicted
by using functionals, i.e. functions of another function, which in this case is the
spatially dependent electron density. Hence the name density functional theory
comes from the use of functionals of the electron density. DFT is among the most
common methods available in condensed-matter physics, computational physics,
and computational chemistry. The DFT method is used to calculate geometries
and energies for medium-sized systems (up to 60 atoms depending on the basis set
used) of biological and pharmaceutical interest and is not restricted to the second
row of the periodic table [72-74].

On the other hand, molecular mechanics is a mathematical approach used for the
computation of structures, energy, dipole moment, and other physical properties. It is
widely used in calculating many diverse biological and chemical systems such as
proteins, large crystal structures, and relatively large solvated systems. However, this
method is limited by the determination of parameters such as the large number of
unique torsion angles present in structurally diverse molecules [75].
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Quantum mechanics methods are important tool to investigate functional
mechanisms of biological macromolecules based on their 3D and electronic
structures. The system size which ab initio calculations can handle is relatively
small despite the large sizes of biomacromolecules surrounding solvent water
molecules. Accordingly, isolated models of areas of proteins such as active sites
have been studied in ab initio calculations. However, the disregarded proteins and
solvent surrounding the catalytic centers have also been shown to contribute to the
regulation of electronic structures and geometries of the regions of interest.

To overcome these discrepancies combined quantum-mechanics/molecular-
mechanics (QM/MM) approaches have become the method of choice for
modeling reactions in biomolecular systems. Quantum-mechanical (QM) methods
are required for calculating chemical and other electronic processes, such as
charge transfer or electronic excitation. However, QM methods are restricted to
systems of up to a limited number of atoms. However, the size and
conformational complexity of biopolymers needs methods capable of treating up
to several 100,000 atoms and allowing for simulations over time scales of tens of
nanoseconds. This is achieved by highly efficient, force-field-based molecular
mechanics (MM) methods. Thus to model large biomolecules the ideal approach
to be used is a combination of the two methods and to use a QM method for the
chemically active site and MM treatment for the surroundings. The resulting
techniques are called combined or hybrid QM/MM methods. They enable the
modeling of reactive biomolecular systems at a reasonable computational time
while providing a reasonable accuracy. The pioneer work of the QM/MM method
was accomplished by Warshel and Levitt, and since then, there has been much
progress on the development of a QM/MM algorithm and applications to
biological systems [76-78].

CALCULATION METHODS USED FOR EXPLORING THE ENZYME
MODELS MECHANISMS AND FOR PRODRUGS DESIGN

The MM2 molecular mechanics strain energy calculations were done using
Allinger’s MM2 program [75]. The Becke three-parameter, hybrid functional
combined with the Lee, Yang, and Parr correlation functional, denoted B3LYP,
were employed in the calculations using density functional theory (DFT). All
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calculations were carried out using the quantum chemical package Gaussian 03
and Gaussian 09 [79]. Calculations were carried out based on the restricted
Hartree-Fock method. The starting geometries of all calculated molecules were
obtained using the Argus Lab program [80] and were initially optimized at the
HF/6-31G level of theory, followed by optimization at the B3LYP/6-31G(d,p) and
B3LYP/6-311+G(d,p) levels. Total geometry optimizations included all internal
rotations. Second derivatives were estimated for all 3N-6 geometrical parameters
during optimization. An energy minimum (a stable compound or a reactive
intermediate) has no negative vibrational force constant. A transition state is a
saddle point which has only one negative vibrational force constant [81]. The
“reaction coordinate method” [82] was used to calculate the activation energy in
the studied processes. Transition states were located first by the normal reaction
coordinate method [82] where the enthalpy change was monitored by stepwise
changing the interatomic distance between two specific atoms (0.1 A). The
geometry at the highest point on the energy profile was re-optimized by using the
energy gradient method at the B3LYP/6-31G(d,p) or B3LYP/6-311+G(d,p) level
of theory. The activation energy values were calculated from the difference in
energies of the global minimum structures (GM) and the derived transition states.
The transition state structures were verified by their only one negative frequency.
The activation energies obtained from the DFT for all molecules were calculated
with and without the inclusion of water. The calculations with the incorporation of
water were performed using the integral equation formalism model of the
Polarizable Continuum Model (PCM) [83-86]. In this model the cavity is created
via a series of overlapping spheres. The radii type employed was the United Atom
Topological Model on radii optimized for the PBE0/6-31G(d) level of theory. In
this chapter, the mechanisms of some enzyme models that have been advocated to
understand enzyme catalysis were computationally investigated. The tool used in
the study is computational approach consisting of calculations using a variety of
different molecular orbital and molecular mechanics methods and correlations
between experimental and calculated reactions rates [87-105].

BRUICE’S ENZYME MODEL BASED ON RING-CLOSING OF DI-
CARBOXYLIC SEMI-ESTERS [95]

Bruice and Pandit have studied the hydrolysis of di-carboxylic semi-esters 1-6
shown in Fig. 3 and found that the relative rate (k. 6>5>4>3>2>1. They
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attributed the enhancement in rates to proximity orientation. Using the
observation that alkyl substitution on succinic acid influences rotamer
distributions, the ratio between the reactive gauche and the unreactive anti-
conformations, they proposed that gem-dialkyl substitution increases the
probability of the resultant rotamer adopting the more reactive conformation.
Therefore, for cyclization to occur, the two reacting centers must be in the gauche
conformation. In the unsubstituted reactant, the reactive centers are almost
completely in the anti-conformation for minimizing steric interactions [45-47].
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Figure 3: Chemical structures for di-carboxylic semi-esters 1-6.

Menger and Bruice ascribed the phenomenon of rate accelerations in some
intramolecular processes to the importance of the proximity of the nucleophile to
the electrophile of the ground state molecules [45-47, 51-55]. Menger in his
“spatiotemporal” hypothesis developed an equation relating activation energy to
distance and based on this equation, he concluded that enormous rate
enhancements in reactions catalyzed by enzymes are achieved by imposing short
distances between the reactive centers of the substrate and enzyme [51-55]. On
the other hand, Bruice attributed the catalysis by enzymes to favorable ‘near
attack conformations’. According to Bruice’s hypothesis, systems that have a high
quota of near attack conformers will have a higher reaction rate and vice versa.
[45-47]. In contrast to the proximity proposal, others believe that high rate
acceleration in intramolecular processes is due to relief of the reactants strain
energy [106]. To examine whether the discrepancy in ring-closing rates of di-
carboxylic semi-esters 1-6 is due to proximity orientation or to strain effects, we
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have calculated, using DFT method at B3LYP/6-31G(d,p) and HF/6-31G(d,p)
levels, the ground state, intermediate and transition state structures as well as the
activation energy values for processes 1-6. The DFT optimized geometries for the
global minimum (GM) and transition state structures (TS) for systems 1-4 and 6
are shown in Figs. 4 and 5, respectively. In accordance with Bruice’s results [45-
47] we have found that the cyclization reaction proceeds by one mechanism, by
which the rate-limiting step is the tetrahedral intermediate collapse and not its
formation (Fig. 6). However, contrarily to Bruice’s conclusion we have found that
the acceleration in rate is due to strain effect rather than to proximity orientation
stemming from the “rotamer effect” (for further information, see Table 1.

1GM 21GM

SGM

Figure 4: DFT at B3LYP/6-31G(d,p) level optimized structures for the global minimum (GM) in
di-carboxylic semi-esters 1-4 and 6.
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Figure 5: DFT at B3LYP/6-31G(d,p) level optimized structures for the transition state (TS) in di-
carboxylic semi-esters 1-4 and 6.
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Figure 6: Proposed mechanism for the cyclization of di-carboxylic semi-esters 1-6.
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To test whether the discrepancy in the reactions rates of 1-6 (Fig. 3) stems from
proximity orientation or due to steric effects, Allinger’s MM2 strain energy values
[75] for the reactants and intermediates in systems 1-4 and 6 were calculated and
their values were correlated with the experimental relative rate (log k) values
[45-47] (see Table 1). The correlation results demonstrated strong correlation
between the two parameters. Attempts to correlate the distance between the two
reacting centers (rgm) and log k. failed to give any linearity between the two
parameters. This suggests that the driving force for the acceleration in the ring-
closing processes is driven by strain energy and not by Bruice’s “near attack
rotamer” [45-47]. Further support to this conclusion was obtained by a strong
correlation found between the activation energy values (AG*i0and AG*gp) for 1-
4 and 6 with both log k. and the MM2 strain energy values, AEs (TS - AN).

Table 1: DFT calculated properties for the cyclization reactions of 1-4 and 6

log Koo > | ESivtem | AGH(GP) | AGH (H,0) rom AG*(GP) | AG* (H,0)
System (exp.) (MM2 calc.) B3L B3L B3L B3L311 B3L311
1 3.00 8.70 19.09 29.37 4.24 9.26 20.33
2 3.30 9.30 12.22 21.10 434 13.13 22.03
3 5.26 8.07 12.83 16.13 431 10.27 13.98
4 5.36 4.24 1.43 9.03 4.08 2.76 12.54
6 7.90 231 10.48 16.51 237 | e | e

log ke is the experimental relative rate [45-47]. AG* is the activation free energy (kcal/mol). rgy is the distance between the
nucleophile (O1) and the electrophile (C6) in the reactant. B3L and B3L311 refer to calculated by B3LYP/6-31G(d,p) and
B3LYP/6-311+G(d,p), respectively. GP and H,O refer to calculated in the gas phase and water, respectively.

The salient points emerged from this computational study are (1) the activation
energy in 1-6 is dependent on the difference in the strain energies of the transition
states and the reactants, and there is no relationship between the cyclization rate
and the distance between the nucleophile (O-) and the electrophile (C). (2) The
observation of opening the cyclic ring during the reaction rate limiting step
supports the notion that the difference in the strain energies of the reactant and the
transition states plays a crucial role in the discrepancy in the rates of cyclization
of the di-carboxylic semi-esters 1-6. (3) Strained reactants such as 6 are more
reactive than the less strained reactants, and the reactivity extent is linearly
correlated with the strain energy difference between the transition state and the
reactant (AEs). (4) The energy needed to provide a stable transition state for a
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strained system is less than that for the unstrained system, since the
conformational change from the reactant to the transition state in the former is
smaller [105].

COMPUTATIONALYY DESIGNED PRODRUGS BASED ON BRUICE’S
ENZYME MODEL - THE ANTIMALARIAL AGENT ATOVAQUONE

(ATQ)

Malaria-like febrile illnesses have been described since Hippocrates as fevers that
were periodic and associated with marshes and swamps. The word “malaria”
comes from the Italian “mal’aria” for “bad airs.” It was not until 1880s that
scientists were able to identify the malaria parasite and link the transmission of
malaria to mosquitoes. Malaria is transmitted to humans via the bite of infected
female mosquito of anopheles species [107]. Malaria can exist, in a mild form that
most commonly associated with flu-like symptoms; fever, vomiting, and general
malaise. While in the sever form caused by P. falciparum, a nervous, respiratory
and renal complications frequently coexist due to serious organ failure [108]. In
severe cases it can progress to coma or death. Malaria commences with a bite
from an infected female Anopheles mosquito, which brings the protists via saliva
into the circulatory system. In the blood circulation, the protists are transferred to
the liver to be matured and reproduced.

The disease is a global public health problem, affecting 40% of the population and
causes about 2 million deaths per year [109]. Most of disease cases are found in
the poorest countries; tropical Africa, Latin America, Southern Asia and Oceania
[110]. A more concern is being given now to malaria even in countries where
there is a low risk of infection; this is due to the phenomena of global warming
which is significantly increasing [111]. World Health Organization (WHO)
assesses that 81% of cases and 91% of deaths are found in African regions.
Children under 5-years old and pregnant women are the most severely affected.
This protozoan disease is caused by 5 parasites species of the genus Plasmodium
that affect humans (P. falciparum, P. vivax, P. ovale, P. malariae and
P. knowlesi) [107]. The only one among these parasites that can cause life
threatening complications is P. falciparum [110], which is dominated in Africa
and to which most drug-resistant cases are attributed.
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Several medications, alone or in combination such as chloroquine, antifolates,
artemisinins and others show effectiveness and were considered as being the
corner stone in malaria treatment. However, drug or multi-drug resistance to these
agents has been escalated and constitutes a major challenge in malaria treatment
[108]. Accordingly, the need for new antimalarial drugs is now widely
recognized, particularly those that are structurally different from existing
antimalarial drugs and possess a novel mechanism of action. Atovaquone, a
hydroxynaphthoquinone, is relatively new treatment option, active against
Plasmodium spp. It has a novel mechanism of action, acts by inhibition of the
electron transport system at the level of cytochrome bcl complex. In malaria
parasites, the mitochondria act as a sink for the electrons generated from
dihydrorotate dehydrogenase; an essential enzyme for pyrimidine biosynthesis;
Inhibition of electron transport by ATQ leads to dihydrorotate dehydrogenase
inhibition resulting in reduced pyrimidine biosynthesis and thus parasite
replication inhibition. It is well established that atovaquone has an excellent safety
profile and long half-life, besides it can be administered via oral route. However,
atovaquone has poor oral bioavailability (less than 10% under fasted condition)
and variable oral absorption due to its poor solubility that results from its
lipophilic structure. Consequently, this results in low and variable plasma and
intracellular levels of the drug which is an important determinant of therapeutic
outcome [112-115].

The prodrug approach has the potential to be the most successful among other
approaches to overcome this shortcoming. Continuing our study on design and
synthesis of atovaquone prodrugs [112], the study herein was to design
atovaquone prodrugs through linking atovaquone to a di-carboxylic semiester
linker (Bruice’s enzyme model) to produce a system that is more hydrophilic than
its parent drug and is able to release the active drug in a chemically driven
controlled manner without any activation by enzyme. Thus, introducing novel
atovaquone prodrugs that fulfill the following requirements: (1) enhanced water
solubility; (2) improved oral bioavailability; (3) controlled release rate; (4)
predicted plasma levels and (5) improved antiparasitic activity. Based on our
calculations that enabled us to unravel the mechanism for the ring-closing reaction
of Bruice’s dicarboxylic semiesters [45-47] and to assign the factors determining
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the reaction rate we have designed five different atovaquone prodrugs with the
potential to have better water solubility than their parent drug and to release the
active parent drug in a controlled manner (Fig. 7).

Calculation of the Effective Molarity (EM) and Relative Rate, Log k.., for
Atovaquone Prodrugs, ATQ ProD 1-ProD 5

The measure generally used for intramolecular efficiency is the effective molarity
(EM). The EM parameter is defined as Kinya/Kiner for corresponding intramolecular
and intermolecular processes driven by identical mechanisms. The factors
determining the EM value are ring size, solvent and reaction type. Cyclization
reactions via intramolecular nucleophilic addition are much more efficient than
intramolecular proton transfers. Values in the order of 10°-10"° M have been
measured for the effective molarity in intramolecular processes occurring through
nucleophilic addition. Whereas for proton transfer processes values of less than 10
M were obtained. The effective molarity parameter is considered an excellent tool
to describe the efficiency of a certain intramolecular Process [56-64, 116].

The experimental relative rates for the intramolecular cyclization of 1-6 (Fig. 3)
were obtained from the division of the intramolecular rate and the corresponding
intermolecular reaction. For obtaining the relative rates (effective molarity, EM)
for processes ATQ ProD 1- ProD 5 we assume that their corresponding
intermolecular process is similar to that for systems 1-6.

Since an excellent correlation was obtained between the activation free energy
values (AGI) for 1-6 and ATQ ProD 1- ProD 5 and the difference in the strain
energy values of the reactants and intermediates, AEsnt.gm), the calculated values of
AEsant-gmy for ATQ ProD 1-ProD 5 were used to calculate their corresponding
relative rates (EM and log k). The calculated EM values for ATQ ProD 1-ProD 5
were 6.96, 6.47, 3.78, 6.50 and -12.82, respectively. These values demonstrate that
ATQ ProD 1 and ATQ ProD 4 are the most efficient processes among all systems
studied and the least efficient are ATQ ProD 3 and ATQ ProD 5.

Using the experimental t;, (the time needed for the conversion of 50% of the
reactants to products) value for the cyclization reaction of di-carboxylic semiester
1 and the calculated log k. values for prodrugs ATQ ProD 1-ProD 5 we have
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calculated the t;, values for the conversion of ATQ ProD 1- ProD 5 to their
parent drug. The calculated t;, values were: ATQ ProD 3, 22.44 hours; ATQ
ProD 1, ATQ ProD 2 and ATQ ProD 4, few seconds and ATQ ProD 5 few
years. Therefore, the intraconversion rates of atovaquone prodrugs to atovaquone
can be programmed according to the nature of the prodrug linker.
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fo) Et 0
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Figure 7: Chemical structures for atovaquone prodrugs ATQ ProD 1- ProD 5.
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BITTERLESS PARACETAMOL PRODRUGS BASED ON BRUICE’S
ENZYME MODEL

The palatability of active drugs is a significant obstacle in developing a patient
convenient dosage form. Organoleptic properties, such as taste, are an important
factor when selecting a drug from the generic products available in the market
having the same active ingredient. It is a key issue for doctors and pharmacists to
assure an adequate drug’s taste upon administration of drugs particularly to the
pediatric and geriatric populations [117].

Organic and inorganic molecules dissolve in saliva and bind to taste receptors on the
tongue to give a bitter, sweet, salty, sour, or umami sensation. Bitter taste is sensed
by the receptors on the posterior part of the tongue. The sensation is a result of signal
transduction from taste receptors located in areas known as taste buds. The taste
buds contain very sensitive nerve endings, which are responsible for the production
and transmission of electrical impulses via cranial nerves VII, IX, and X to certain
areas in the brain that are devoted to the perception of taste [118]. Molecules with
bitter taste [119-123] are very diverse in their chemical structure and
physicochemical properties [124, 125]. In humans, bitter taste perception is mediated
by 25 G-protein coupled receptors of the hTAS2R gene family. Drugs such as
macrolide antibiotics, non-steroidal anti-inflammatory and penicillin derivatives
have a pronounced bitter taste [126]. Masking the taste of water soluble bitter drugs,
especially those given in high doses, is difficult to achieve by using sweeteners
alone. Consequently, several approaches have been studied and have resulted in the
development of more efficient techniques for masking the bitter taste of molecules.
There are various techniques available which are commonly used for masking drug’s
bitterness: (1) taste masking with flavors, sweeteners, and amino acids [127]; (2)
taste masking with lipophilic vehicles such as lipids, lecithin, and lecithin- like
substances[128]; (3) coating which is classified based on the type of coating
material, coating solvent system, and the number of coating layers [129]; (4)
microencapsulation based on the principle of solvent extraction or evaporation [130];
(5) sweeteners are generally used in combination with other taste masking
technologies [131]; (6) taste suppressants and potentiators, such as Linguagen’s
bitter blockers (e.g. adenosine monophosphate), are used for masking the bitter taste
of various compounds by competing with binding to the G-protein coupled receptor
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sites (GPCR) [132]; (7) resins are utilized to mask pharmaceuticals bitterness by
forming insoluble resonates [133, 134]; (8) inclusion complex by which the drug
molecule fits into the cavity of a complexing agent and forms a stable complex that
masks the drug bitterness by decreasing its oral solubility [135]; (9) pH modifiers are
capable of generating a specific pH microenvironment in aqueous media that has the
ability to facilitate in situ precipitation of the bitter drug compound in saliva thus
reducing the overall taste sensation for liquid dosage forms [136]; (10) adsorbates;
the compound may be adsorbed or entrapped in the matrix of the adsorbate pore,
which may result in a delayed release of the bitter tastant during passage through the
oral cavity and thus masking the taste [137] and (11) the prodrug approach by which
a functional group/s binds to the bitter taste receptor is blocked by a promoiety. All
of the developed techniques are based on the physical modification of the
formulation containing the bitter tastant. Although these approaches have helped to
improve the taste of some drugs formulations, the problem of drug bitterness in
pediatric and geriatric formulations still creates a serious challenge to the health
community. Thus, different strategies should be developed in order to overcome this
serious problem. Bitter tastant molecules interact with taste receptors on the tongue
to give bitter sensation. Altering the ability of the drug to interact with its bitter taste
receptors could reduce or eliminate its bitterness. This could be achieved by an
appropriate modification of the structure and the size of the bitter compound. Bitter
molecules bind to the G-protein coupled receptor-type T2R on the apical membrane
of the taste receptor cells located in the taste buds. In humans, about 25 different
T2R’s are described. Additionally, several alleles are known and about 1000
different bitter phenotypes exist in human beings [120-126]. Due to the large
variation of structural features of bitter taste molecules; it is difficult to generalize
the molecular requirements for bitterness. Nevertheless, it was reported that a bitter
tastant molecule requires a polar group and a hydrophobic moiety. A QSAR model
was developed and has been established for the prediction of bitterness of several
tastant analogues. For example, it was reported that the addition of a pyridinium
moiety to an amino acid chain of a variety of bitter amino acid compounds decreases
bitterness, such as in the case of glycine. Other structural modifications, such as an
increase in the number of amino groups/residues to more than 3 and a reduction in
the polyhydroxyl group/ COOH, have been proven to decrease bitter sensation.
Moreover, changing the configuration of a bitter tastant molecule by making isomer
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analogues was found to be important for binding affinity to enhance bitterness
agonist activity (e.g. L-tryptophan is bitter while D-tryptophan is sweet) [138].

Paracetamol is an odorless, bitter crystalline compound used as an over the
counter analgesic and antipyretic drug. Paracetamol is used to relief minor aches.
It is used as pain killer by decreasing the synthesis of prostaglandin due to
inhibition of cyclooxygenases (COX-1 and COX-2) [139]. Paracetamol is favored
over aspirin as pain killer in patients who have excessive gastric secretion or
prolonged bleeding [139]. It was approved to be used as fever reducer in all ages.
Pharmacokinetic studies have shown that urine of patients who had taken
phenacetin contained paracetamol. Later was demonstrated that paracetamol was a
urinary metabolite of acetanilide [139]. Phenacetin is known historically to be one
of the first non-opioid analgesics lacking or has a very slight bitter taste [139].
Comparison of the structures of paracetamol and phenacetin shows close
similarity between both analgesics except of the nature of the group on the para
position of the benzene ring. While in paracetamol the group is hydroxyl, in
phenacetin it is ethoxy. On the other hand, acetanilide has a chemical structure
similar to that of paracetamol and phenacetin but it lacks any group at the para
position of the benzene ring. Acetanilide lacks the bitter taste characteristic for
paracetamol [139]. The comparisons of the three compounds suggest that the
presence of hydroxy group on the para position of the benzene ring plays a major
role in the bitter sensation resulted from administering paracetamol. Therefore, it
is expected that masking the hydroxyl group in paracetamol with a suitable linker
might inhibit the binding of paracetamol to its bitter taste receptor/s and hence
masking its bitterness. It is likely that paracetamol binds to the active site of its
bitter taste receptor via hydrogen bonding interactions by which its phenolic
hydroxyl group is engaged. It is worth noting, that linking paracetamol with
Bruice’s enzyme model linker via its phenolic hydroxyl group might hinder
paracetamol bitter taste.

Based on the DFT calculations on the cyclization of Bruice’s 1-6 (Fig. 3), two
paracetamol prodrugs were proposed (Fig. 8). As shown in Fig. 8, the paracetamol
prodrugs, ProD 1-2, have a carboxylic acid group as a hydrophilic moiety and the
rest of the prodrug, as a lipophilic moiety, where the combination of both groups
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provides a moderate HLB. It should be noted that the HLB value is determined
upon the pH of the physiologic environment by which the prodrug is dissolved.
For example, in the stomach, the paracetamol prodrugs will primarily exist in the
carboxylic acid form whereas in the blood circulation the carboxylate form will be
dominant. Since Bruice’s cyclization reaction occurs in basic medium
paracetamol ProD 1-2 were obtained as carboxylic free acid form, since this form
is expected to be stable in acidic medium such as the stomach.
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Figure 8: Hydrolysis of paracetamol ProD 1 and paracetamol ProD 2.

IN VITRO INTRA-CONVERSION OF PARACETAMOL PROD 1-PROD 2
TO THEIR ACTIVE DRUG, PARACETAMOL

The hydrolysis of paracetamol ProD 1-ProD 2 was studied in four different
media; 1N HCI and buffers pH 3, pH 6.6 and pH 7.4. The prodrug hydrolysis was
monitored using HPLC analysis. At constant pH and temperature the release of
paracetamol from its prodrug was followed and showed a first order kinetics. kops
(h'l) and t;, values for the intraconversion of paracetamol ProD 1-ProD 2 was
calculated from regression equation obtained from the plot of log concentration of
residual of paracetamol ProD 1 vs. time. The kinetics results in the different
media are summarized in Table 2 and Fig. 9.
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Table 2: The observed & value and ¢/, of paracetamol ProD 1-ProD 2 In 1N HCI and buffers pH 3
and 7.4

ProD1 ProD2 ProD1 ProD2
Medium Kops (™) Kops (™) ty (h) ty, (h)
IN HCl No reaction No reaction No reaction No reaction
Buffer pH 3 63x10° | e 3 Very fast
Buffer pH 7.4 6.1x10% | - 0.3 Very fast

As shown in Table 2 the hydrolysis rate of paracetamol ProD 1 at pH 7.4 was the
fastest among all media, followed by pH 3 medium. In 1N HCI no conversion of the
prodrug to the parent dug was observed. The discrepancy in the behavior between
the two prodrugs is due to the fact that the strain energy of maleic anhydride is
higher than that of succinic anhydride. It should be emphasized that the reaction rate
in these processes is determined on the strain energy of the system.

(a) log C (mg/mi) vs. time (min) (b) log C (mg/ml) vs.time (min)
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Figure 9: First order hydrolysis plot of paracetamol ProD 1 in (a) buffer pH 3and (b) buffer pH 7.4.

At pH 7.4, paracetamol ProD 1-ProD 2 are mainly exist as the carboxylate anion
form which is expected to undergo fast hydrolysis according to Bruice’s
mechanism shown in Fig. 3. At pH 3, the prodrug exists in both form, the
carboxylate anion and the carboxylic free acid forms since the pKa of the prodrug
is about 3. In 1N HCI, the prodrug is entirely exists as the carboxylic free acid
form and since only the carboxylate anion form undergoes Bruice’s cyclization.
The hydrolysis rate in IN HCl is almost negligible or zero.
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KIRBY’S ENZYME MODEL BASED ON THE ACID-CATALYZED
HYDROLYSIS OF N-ALKYLMALEAMIC ACIDS (58, 93, 140-145].

Proton transfer reactions which are typically acid- or base-catalyzed reactions are
the most common reactions that enzymes catalyze. Examples of biotransformation
processes for such catalysis are the proton transfers catalyzed by triose phosphate
isomerase (ke = 53,000 s'l) and A5-3-ketosteroid isomerase (kee = 8300 s'l)
which involve weakly basic and acid groups to achieve such magnificent rates.
The fact that reactions of substrate bound in an enzyme active site are between
functional groups held in a close proximity encouraged scientists to utilize
intramolecularity in modeling the extremely high efficiency of enzymes. Both,
enzymes and intramolecularity are similar in that the reacting centers are held
together, non-covalently with the former, and covalently with the latter. The
significant high efficiency of enzymes catalysis depends on a combination of
some factors that most of them have been recognized but none of them was fully
understood. Although the devoted research to the chemistry of enzyme catalysis is
growing rapidly a number of crucial factors remain to be investigated [151-164].
Kirby et al. have researched the mechanism of the acid catalyzed hydrolysis of N-
alkylmaleamic acids 7-15 to their corresponding maleamic acids and amines
(Fig. 10). The study found that the reaction is remarkably sensitive to the pattern
of substitution on the carbon-carbon double bond. In addition, it revealed that the
rates of hydrolysis of the studied dialkyl-N-methylmaleamic acids range over
more than ten powers of ten, and the “effective concentration” of the carboxy-
group of the most reactive amide, dimethyl-N-n-propylmaleamic acid, is greater
than 10'® M. This acid amide was found to be converted into the more stable
dimethylmaleic anhydride with a half-life of less than one second at 39 °C below
pH 3 [58]. In addition, Kirby’s study demonstrated that the amide bond cleavage
is due to intramolecular nucleophilic catalysis by the adjacent carboxylic acid
group. Furthermore, based on the fact that the tetrahedral intermediate
isomaleimide was converted quantitatively into N-methylmaleamic acid (Fig. 11),
Kirby suggested that the rate-limiting step is the dissociation of the tetrahedral
intermediate [58]. Later on Kluger and Chin researched the intramolecular
hydrolysis mechanism of a series of N-alkylmaleamic acids derived from aliphatic
amines having a wide range of basicity [146]. Their study revealed that the



From Conventional Prodrugs to Prodrugs Designed  Frontiers in Computational Chemistry, Vol. 2 215

identity of the rate-limiting step is a function of both the basicity of the leaving
group and the acidity of the solution. In 1990, Katagi has computationally studied
the reaction mechanism using AM1 semiempirical method and based on his study
he concluded that the rate- limiting step is the formation of the tetrahedral
intermediate and not its dissociation [147]. For further exploring the factor
playing dominant role in proton transfer processes we have computationally
studied Kirby’s intramolecular acid catalyzed hydrolysis of (4-amino- 4-oxo-2-
butenoic) acids (N- alkylmaleamic acids) 7-15.

(o] (0]
R4 R4
NHCH, H,0 o +  NH,CH;
OH
R; R;
o o
7, R1:R2:H
8, R1=R2=Me

9 ; R4=H; R,=Me

10; R4,R, Cyclopent-l-ene-1,2-diyl
11; R4, Ry Cyclohex-l-ene-1,2-diyl
12; R4=H; R,=Et

13; R4=H; Ry=n-Propyl

14; R4=H; R,=Trifluoromethyl

15; R4=R,= Trifluoromethyl

Figure 10: Chemical structures for N-alkylmalic acids 7-15.

The aims of our computational work were to: (i) investigate whether the rate-
limiting step in 7-15 is the formation or the collapse of the tetrahedral
intermediate, and to unravel the nature of the driving force(s) responsible for the
extremely high rates determined for the acid catalyzed hydrolysis of 8 and 11, (ii)
assign the structural factors associated with high reactivity in the hydrolysis, in
the expectation that similar factor will be operative in enzyme catalysis.

NMe o

NHMe

OH

o) (o]

. N-methylmaleamic acid
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Figure 11: Conversion of isomaleimide to N-methylmaleamic acid.
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Using DFT calculation methods at B3LYP/6-31G(d,p), B3LYP/6-311+G(d,p)
levels and hybrid GGA (MPWI1k) we have computed the acid catalyzed
hydrolysis of maleamic (4-amino-4-oxo-2-butenoic) acids (Kirby’s N-
alkylmaleamic acids) 7-15 (Fig. 10) and the calculation results confirmed that the
reaction proceeds in three steps: (a) a proton transfer from the carboxylic group to
the adjacent amide carbonyl carbon followed by, (b) nucleophilic attack of the
carboxylate anion onto the protonated carbonyl carbon and (c) dissociation of the
tetrahedral intermediate to provide products (Fig. 12). In addition, the calculation
results demonstrate that the rate-limiting step is dependent on the reaction
medium. When the calculations were run in the gas phase the rate-limiting step
was the formation of the tetrahedral intermediate, whereas when they were
conducted in the presence of water the dissociation of the tetrahedral intermediate
was the rate-limiting step (see Tables 3 and 4). Further, when the leaving group
(CH3NH3) in 7-15 was replaced with a group having a low pKa value the rate-
limiting step was the formation of the tetrahedral intermediate, such as in the case
where CH3NH2 was replaced with CF3NH2 (see Fig. 12 and Tables 3 and 4).
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Figure 12: Proposed mechanism for the hydrolysis of N-alkylmaleamic acids 7-15.
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Table 3: DFT (B3LYP) calculated kinetic and thermodynamic properties in the gas phase for the
acid catalyzed hydrolysis of 7-15

. . . AGggp'
Svstem AHgge' | TASpge' | AGpee' | AHgpgp' | TASkge' | AGrp' | AGgea'™ | AGrea® (kcal]/;IGI:)OI)
y (kcal/mol)|(kcal/mol)|(kcal/mol)|(kcal/mol)|(kcal/mol)|(kcal/mol)|(kcal/mol)|(kcal/mol) .
In high pH
27.31 -0.77 28.08 32.46 -1.09 33.53 34.27 31.35 45.55
13.93 -2.49 16.42 25.67 -1.41 27.08 16.32 21.29 33.59
24.41 -0.49 24.90 30.68 -1.89 32.57 29.53 28.23 44.68

10 34.42 -2.35 36.77 41.88 -3.49 45.37 40.23 39.27 53.5
11 13.25 -4.16 17.41 24.55 -2.32 26.87 18.51 22.34 34.52

12 23.83 -0.09 23.92 30.11 -2.01 32.12 29.53 27.50 45.72
13 24.86 -0.17 25.03 30.76 -1.54 32.30 28.35 2776 | -
14 24.08 -0.89 24.87 29.79 -2.58 32.37 29.76 2820 | -
15 17.88 0.64 17.24 24.17 -1.77 25.94 24.46 18.69 | ------

B3LYP refers to values calculated by B3LYP/6-31G(d, p) method. AH* is the calculated activation enthalpic energy
(kcal/mol). TAS! is the calculated activation entropic energy (kcal/mol). AG* is the calculated activation free energy
(kcal/mol). D and F refer to tetrahedral intermediate dissociation and tetrahedral intermediate formation. GP and Eth refer
to calculated in the gas phase and in ether, respectively.

Table 4: DFT (B3LYP/6-31G(d,p)) calculated kinetic and thermodynamic properties for the acid
catalyzed hydrolysis of 7-15

Systen] AHpw! | AGpw' llog k| log EM ]1;5[ Es (INT,)| Es(P) |Es(GM)| AGpw' EX‘[’sﬁGi
(kcal/mol)(kcal/mol) [58] |(Exp) [56] (Calo) (kcal/mol)(kcal/mol)(kcal/mol)(kcal/mol) (kcal/mol)
1 32.29 33.06 0 7.724 | 8.52 | 20.55 25.08 10.16 26.10 23.70
2 17.56 20.05 |4.371| 1586 |[18.08| 16.16 18.93 10.82 17.90 17.30
3 27.93 2842 |1.494| 7.742 [11.93| 17.32 21.70 9.40 24.80 21.14
4 35.76 38.11 [-4.377| 1.255 4.81 27.89 32.75 12.30 32.16 30.70
5 18.96 23.12 {2.732| 15.190 [15.82| 19.25 23.13 9.18 17.89 19.75
6 27.19 2728 |1.516| 6.962 |12.76| 17.59 22.95 5.12 2387 | -
7 27.38 27.55 |1.648| 8.568 |12.57| 18.55 24.00 6.20 2440 | -
8 29.23 3012 | - | - 636 | 22.34 27.77 12.86 23.66
9 15.79 1515 | -] -—-- 21.68 | 26.92 35.64 28.29 11.97

B3LYP refers to values calculated by B3LYP/6-31G(d, p) method. AH* is the calculated activation enthalpic energy (kcal/mol).
TAS! is the calculated activation entropic energy (kcal/mol). AG* is the calculated activation free energy (kcal/mol). Es refers to
strain energy calculated by Allinger’s MM2 method [75]. INT, and P refer to intermediate 2 and product, respectively. EM =
g “(AGHinter - AGINIRT 1yRy and FW refer to tetrahedral intermediate dissociation and tetrahedral intermediate formation calculated in
water, respectively. Exp Refers to experimental value. Calc refers to calculated DFT values.

The calculations demonstrated that the efficiency of the intramolecular acid-
catalyzed hydrolysis by the carboxyl group is remarkably sensitive to the pattern
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of substitution on the carbon-carbon double bond. The rate of hydrolysis was
found to be linearly correlated with the strain energy of the tetrahedral
intermediate or the product. Systems having strained tetrahedral intermediates or
products were found to be with low rates and vice versa [58, 93,140-145].

COMPUTATIONALLY DESIGNED PRODRUGS BASED ON
INTRAMOLECULAR ACID-CATALYZED HYDROLYSIS OF KIRBY’S
N-ALKYLMALEAMIC ACIDS - TRANEXAMIC ACID PRODRUGS

Tranexamic acid is a synthetic lysine amino acid derivative. It was originally
developed to prevent and reduce excessive hemorrhage in hemophilia patients and
reduce the need for replacement therapy during and following tooth extraction. It
is often prescribed for excessive bleeding. The mechanism by which tranexamic
acid exerts its antifibrinolytic activity is by competitively inhibits the activation of
plasminogen to plasmin, a molecule responsible for the degradation of fibrin.
Tranexamic acid has roughly 8 times the antifibrinolytic activity of an older
analogue, e-aminocaproic acid. Over the past few years, the use of tranexamic
acid has been expanding beyond the small number of hemophilia patients; it is an
important agent in decreasing mortality rate due to bleeding in trauma patients;
this can be seen from CRASH-2 study which concludes that all causes to
mortality, relative risk and relative death due to bleeding were reduced with
tranexamic acid group more than placebo group. It can be used safely in women
whom undergo lower segment cesarean section, in this operation it was found that
tranexamic acid reduces the blood loss during and after surgery, and it is
pharmacologically active in reducing intra-operative using of blood heart surgery,
hip and knee replacement surgery and liver transplant surgery. Recently, a new
oral formulation of tranexamic acid was shown to be safe and effective for
treatment of heavy menstrual bleeding. Oral administration of tranexamic acid
results in a 45% oral bioavailability. The total oral dose recommended in women
with heavy menstrual bleeding was two 650 mg tablets three times daily for 5
days. Accumulation following multiple dosing was reported to be minimal. Post-
partum hemorrhage is a leading cause of maternal mortality, accounting for about
100000 maternal deaths every year. Medications used to control postpartum
hemorrhage (PPH) are in the category of uterotonic drugs. These drugs stimulate
contraction of the uterine muscle, helping to control PPH. The two medications
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most commonly used for treatment include oxytocin or misoprostol. In addition,
patients are commonly given an IV blood transfusion in cases of severe
hemorrhage. In third world countries, availability of blood and fluid replacement
may be an issue. One approach to decrease the risk of maternal hemorrhage may
be to improve the availability of blood and fluid replacement. An alternative
approach is to decrease the likelihood of maternal hemorrhage. Furthermore, all
the treatment options mentioned above are intended for intravenous
administration; this may not be a viable option in under-developed countries.
Therefore, a cheaper oral alternative may be better suited for such circumstances.
Tranexamic acid can be used safely and effectively to reduce bleeding resulting
from caesarian section (CS). After the withdrawing of aprotinin from worldwide
market in November 2009, tranexamic acid is the only marketed antifibrinolytic
agent available in the market. Further, it was found that tranexamic acid is also
effective in inhibiting the activity of urokinase in urine and it is safe and effective
for treating severe hematuria in patient with chronic renal impairment that poorly
respond to conventional therapy.

Recent studies have showed that tranexamic acid inhibits the ultraviolet radiation
induced pigmentation activity, thus it can be used as bleaching agents. Oral
tranexamic acid dosage form was found to be effective and safe in treating malesma,
a hypermelanosis disease that occurs in Asian women. Since tranexamic acid is an
amino acid derivative and undergoes ionization in physiologic environments its oral
bioavailability is expected to be low due to inefficient absorption through
membranes. Note the log P (partition coefficient) for tranexamic acid is -1.6. Hence,
there is a necessity to design and synthesis relatively more lipophilic tranexamic acid
prodrugs that can provide the parent drug in a sustained release manner which might
result in better clinical outcome, more convenient dosing regimens and potentially
fewer side effects than the original medication. Pharmacologically inactive chemical
derivatives that could be used to alter the physicochemical properties of tranexamic
acid, in a temporary manner and to increase its usefulness should be lipophilic
linkers that are covalently linked to the parent drug and can be converted in vivo to
the active drug molecule, enzymatically or no enzymatically, to exert a therapeutic
effect. Ideally, the prodrugs should be converted to the original drug as soon as the
goal is achieved, followed by the subsequent rapid elimination of the released
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derivatizing group. For example, tranexamic acid is given by continuous IV infusion
resulting in peak plasma concentration following administration. If a slow release
prodrug can be prepared, then C related side effects may be avoided and longer
duration exposure may be achieved resulting in potentially better maintenance
paradigm. Improvement of tranexamic acid pharmacokinetic properties and hence its
effectiveness may increase the absorption of the drug via a variety of administration
routes, especially the oral and SC injection routes [148-153].
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Figure 13: Acid-catalyzed hydrolysis of tranexamic acid prodrugs ProD 1 -ProD 4.

Based on DFT calculations for the acid-catalyzed hydrolysis of several N-
alkylmaleamic acid derivatives (Fig. 10) four tranexamic acid prodrugs were
designed (Fig. 13). The DFT results on the acid catalyzed hydrolysis revealed that
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the reaction rate-limiting step is determined on the nature of the amine leaving
group. When the amine leaving group was a primary amine or tranexamic acid
moiety, the tetrahedral intermediate collapse was the rate-limiting step, whereas in
the cases by which the amine leaving group was aciclovir or cefuroxime the rate-
limiting step was the tetrahedral intermediate formation. The DFT optimized
global minimum, intermediate and transition state structures are illustrated in
Figs. 14, 15 and 16, respectively. Based on the DFT calculated rates the predicted
ti» (a time needed for 50% of the prodrug to be converted into drug) values for
tranexamic acid prodrugs ProD 1- ProD 4 (Fig. 13) at pH 2 were 556 hours, 253
hours, 70 seconds and 1.7 hours, respectively (for correlation of experimental vs.
calculated values, see Fig. 17).

ProD 1GM
ProD 2GM
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1.664

ProD 4GM
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Figure 14: DFT optimized structures for the global minimum (GM) in tranexamic acid ProD 1-
ProD 4.
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Figure 15: DFT optimized structures for the tetrahedral intermediate (INT) in tranexamic acid
ProD 1- ProD 4.

The kinetic study for the acid-catalyzed hydrolysis of tranexamic acid ProD 1 was
carried out in aqueous buffer in the same manner as that done by Kirby on Kirby’s
enzyme model 7-15. This is in order to explore whether the prodrug hydrolyzes in
aqueous medium and to what extent or not, suggesting the fate of the prodrug in the
system. Acid-catalyzed hydrolysis kinetics for the synthesized tranexamic acid ProD
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Figure 16: DFT optimized structures for the tetrahedral intermediate dissociation step (TSy) in
tranexamic acid ProD 1- ProD 4.

1 was studied in four different aqueous media: 1 N HCI, buffer pH 2, buffer pH 5
and buffer pH 7.4. Under the experimental conditions the target compounds
hydrolyzed to release the parent drug (Fig. 18) as evident by HPLC analysis. At
constant pH and temperature the reaction displayed strict first order kinetics as the
kobs Was fairly constant and a straight plot was obtained on plotting log concentration
of residual prodrug verves time. The rate constant (kqs) and the corresponding half-
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Figure 17: (a) Plot of activation energy for tetrahedral intermediate dissociation AG4* vs. strain
energy of the tetrahedral intermediate (Esyyr) in systems 7-13 and tranexamic acid ProD 1- ProD
3. (b) Plot of acid-catalyzed hydrolysis experimental rate (log k) vs. intermediate strain energy
(Esmnt) for processes 7-13. (c) Plot of the DFT calculated effective molarity (EMc,) vs. the
experimental effective molarity (EMcy,) for systems 7-13.

lives (t;2) for tranexamic acid prodrug ProD 1 in the different media were calculated
from the linear regression equation correlating the log concentration of the residual
prodrug verses time. The kinetic data are listed in Table 5. The IN HCI, pH 2 and
pH 5 were selected to examine the interconversion of the tranexamic acid prodrug in
pH as of stomach, because the mean fasting stomach pH of adult is approximately 1-
2 and increases up to 5 following ingestion of food. In addition, buffer pH 5 mimics
the beginning small intestine pathway. Finally, pH 7.4 was selected to examine the
interconversion of the tested prodrug in blood circulation system. Acid-catalyzed
hydrolysis of the tranexamic acid ProD 1 was found to be higher in 1N HCIl than at
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pH 2 and 5 (Fig. 18). At IN HCI the prodrug was hydrolyzed to release the parent
drug in less than one hour. On the other hand, at pH 7.4, the prodrug was entirely
stable and no release of the parent drug was observed. Since the pK, of tranexamic
acid ProD 1 is in the range of 3-4, it is expected at pH 5 the anionic form of the
prodrug will be dominant and the percentage of the free acidic form that undergoes
the acid-catalyzed hydrolysis will be relatively low. At 1IN HCI and pH 2 most of the
prodrug will exist as the free acid form and at pH 7.4 most of the prodrug will be in
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the anionic form. Thus, the difference in rates at the different pH buffers.
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Table 5: The observed & value and ¢, of tranexamic acid prodrug (ProD 1) In 1N HCl and at pH
2,5and 7.4

Medium ks (WY t,, (h)
IN HCI 5.13x 107 0.9
Buffer pH 2 3.92x 107 23.9
Buffer pH 5 3.92x 10 270
Buffer pH 7.4 No reaction No reaction

Comparison between the calculated t;, values (556 h) for tranexamic acid ProD 1
to the experimental value (23.9 h) indicates that the calculated value is about 23
times larger than the experimental. This discrepancy between the calculated and
the experimental values might be attributed to the fact that the PCM model
(calculations in presence of water) is not capable for handling calculations in
acidic aqueous solvent (medium) since the dielectric constant for pH 2 aqueous
solutions is not known. In the study calculations the value of 78.39 (dielectric
constant for pure water) was used instead. The t;, experimental value at pH 5 was
270 hours and at pH 7.4 no interconversion was observed. The lack of the reaction
at the latter pH might be due to the fact that at this pH tranexamic acid ProD 1
exists solely in the ionized form (pK, about 4). As mentioned before the free acid
form is a mandatory requirement for the reaction to proceed. On the other hand,
tranexamic acid ProD 4 has a higher pK, than tranexamic acid ProD 1 (about 6
vs. 4). Therefore, it is expected that the interconversion rate of tranexamic acid
ProD 4 to its parent drug, tranexamic acid, at all pHs studied will be higher (log
EM for ProD 4 is 14.33 vs. 9.53 for ProD 1).

Future strategy to achieve desirable tranexamic acid prodrugs capable of releasing
tranexamic acid in a controlled manner and enhancing the parent drug
bioavailability is: (i) synthesis of tranexamic acid ProD 4; (ii) kinetic studies (in
vitro) of ProD 4 will be performed in at pH 6.5 (intestine) and pH 7.4 (blood
circulation system) (iii) in vivo pharmacokinetic studies will be done in order to
determine the bioavailability and the duration of action of the tested prodrug.
Furthermore, based on the in vivo pharmacokinetics characteristics of tranexamic
acid ProD 4 new prodrugs may be design and synthesized.
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BITTERLESS ATENOLOL PRODRUGS

Atenolol, 4-[2-hydroxy-3-[(1-methylethyl) amino] propoxy] benzene acetamide is
a relatively polar hydrophilic compound with a log partition coefficient (octanol/
water) of 0.23. Lipid insoluble hydrophilic compounds such as atenolol, sotalol,
nadolol are excreted only by the kidneys and have low brain penetration. Atenolol
is a selective B;-adrenoceptor antagonist, applied in the treatment of numerous
cardiovascular disorders including: hypertension, angina, acute myocardial
infarction, supraventricular tachycardia, ventricular tachycardia, and the
symptoms of alcohol withdrawal via restricting certain nerve impulses, thereby
controlling the rate and force of contraction and consequently reducing blood
pressure in addition to its treatment of Angina Pectoris. Atenolol is marketed as
tablets and an injectable formulation [154, 155]. Atenolol has a pKa of 9.6; it
undergoes ionization in the stomach and intestine thus its oral bioavailability is
low due to inefficient absorption through membranes. The bioavailability of
atenolol is between 45% and 55% of the given dose and is not increased by
administration of the drug in a solution form [156-158]. About 50% of
administered atenolol is absorbed; however, most of the absorbed quantity reaches
the systemic circulation. Atenolol peak blood levels are reached within two to
four hours after ingestion. Differently from propranolol or metoprolol, atenolol is
resistant to metabolism by the liver and the absorbed dose is eliminated by renal
excretion. More than 85% of L.V. dose is excreted in urine within 24 hours
compared to 50% for an oral dose. Only 6-16% is protein-bound resulting in
relatively consistent plasma drug levels with about a four-fold inter-patient
variation. The elimination half-life of atenolol is between 6 to 7 hours and there is
no alteration of kinetic profile of a drug by chronic administration. Atenolol is one
of the most important medicines used for prevention of several types of
arrhythmias in childhood, but unfortunately it is still unlicensed [159]. On the
other hand, atenolol is indicated as a first-step therapy for hypertension in elderly
patients, who have difficulty in swallowing and, thus, tablets and capsules are
frequently avoided. The ease of administration makes a liquid formulation an
ideal dosage form for such patients [160]. Therefore, extemporaneous
compounding (off label), involves preparation of an oral liquid from a pure drug
powder is required. However, formulations compounded from tablets and pure
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active drug suffer instability and are only stable for less than one week [142, 161,
162]. Furthermore, atenolol bitterness is considered as a great challenge to health
sector when used among children and geriatrics [163]. The main problem in oral
administration of bitter drugs such as atenolol is incompliance by the patients
[164] and this can be overcome by masking the bitterness of the drug either by
decreasing its oral solubility on ingestion or eliminating the interaction of drug
particles to taste buds [165].

Previous studies on stability of atenolol ester prodrugs for the use in transdermal
preparations have shown that these ester derivatives are much more stable than
the corresponding alcohol, atenolol, when they are formulated in aqueous
solutions [166-167]. On the other hand, the only atenolol prodrug intended for
oral dosage form use was atenolol aspirinate prodrug; it is described for
antihypertensive therapy to reduce cardiovascular death, stroke, and myocardial
infarction (MI), however, recent studies showed that coupling of atenolol with
acetyl salicylic acid by means of an ester linkage did not produce efficient
pharmacological profile, neither in vitro nor in vivo [168]. Continuing our study
on the design and synthesis of novel prodrugs for drugs with bitter sensation, and
medicines having low bioavailability we sought to: (1) design atenolol prodrugs
that can be (i) formulated in aqueous solutions and maintain stability over a long
period of time, (ii) lack bitterless and have the capability to undergo
intraconversion in physiological environment to provide the parent active drug,
atenolol, in a programmable manner and (2) synthesize, characterize and in vitro
study the kinetic of the interconversion of the designed prodrugs in different
media: 1 N HCI and at buffers of pH 2, pH 5 and pH 7.4. Our proposed atenolol
prodrugs that were designed based on the acid-catalyzed hydrolysis reactions of
N-alkyl maleamic acids 7-15 (Fig. 10) are depicted in Fig. 19. As illustrated in
Fig. 19, the only difference between the proposed atenolol prodrugs and the
parent drug, atenolol, is that the amine group in atenolol was replaced with an
amide moiety. This chemical change is expected to increase the stability of the
alcohol derivative (prodrug) compared to the corresponding amine alcohol,
atenolol, due to general chemical stability for tertiary alcohols over amine
alcohols. In addition, stability studies on atenolol ester derivatives showed the
ester derivatives to be much more stable than their corresponding alcohols upon
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formulating in aqueous solutions. On the other hand, kinetic study of atenolol and
propranolol revealed that increasing the lipophilicity of the drug leads to an
increase in the stability of its aqueous solutions. Based on that, it is expected that
atenolol prodrugs (atenolol amide derivatives) shown in Fig. 19 will be more
resistant to heat or/oxidation when standing in aqueous solutions.

In similar to paracetamol, it is expected that blocking the amine group in atenolol
with a suitable linker might inhibit the interaction between the amine group in
atenolol and its bitter taste receptor and hence masks its bitterness. The nature of
the bitter taste receptors with either paracetamol (via the phenolic group) or
atenolol (via the amine group) is likely to be as a result of hydrogen or ionic
bonding between the substrate and the receptor.
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Figure 19: Acid-catalyzed hydrolysis of atenolol ProD 1-ProD 2.

As shown in Fig. 19, the proposed atenolol prodrugs, atenolol ProD 1 and
atenolol ProD 2, have a hydroxyl and carboxylic acid groups (hydrophilic
moiety) and the rest of the prodrug molecule is a lipophilic moiety, where the
combination of both groups ensures a molecule with a moderate hydrophilic
lipophilic balance (HLB).

It is worthy to note that the HLB value of atenolol prodrug moiety will be largely
determined on the medium (physiologic environment) by which the prodrug is
dissolved. For instance, in the stomach (pH 1-2), atenolol prodrugs will exist in the
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free carboxylic acid form whereas in the blood circulation (pH 7.4) the carboxylate
anion form will be dominant. It is planned that atenolol ProD 1- ProD 2 (Fig. 19)
will be formulated as sodium carboxylate salts since this form is expected to be
stable in neutral aqueous medium. However, upon exposure to stomach (pH less
than 3) the prodrugs will exist mainly as free carboxylic acid forms thus enabling the
acid-catalyzed hydrolysis to proceed. The DFT calculations for the acid-catalyzed
hydrolysis of atenolol ProD 1-ProD 2 demonstrated (the optimized structures for the
global minimum and transition state structures are shown in Fig. 20) that the reaction
rate is linearly correlated with the following: (a) the strain energy of the tetrahedral
intermediate and product and the strain energy difference between the intermediate
and the reactant. (b) The distance between the hydroxyl oxygen of the carboxyl
group and the amide carbonyl carbon, and (c) the attack angle by which the approach
step commences. Based on the experimental t;, (the time needed for the conversion
of 50% of the reactants to products) and EM (effective molarity) values for
processes 7-15 we have calculated the t;, values for the conversion of the two
atenolol prodrugs to the parent drug, atenolol. The calculated t;, values for atenolol
ProD 1-2 are predicted to be 65.3 hours and 11.8 minutes, respectively. Thus, the
rate by which atenolol prodrug undergoes cleavage to release atenolol can be
determined according to the nature of the linker of the prodrug (Kirby’s N-
alkylmaleamic acids 7-15, Fig. 10).
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Figure 20: DFT optimized structures for the global minimum (GM), intermediate (INT,) and
transition state (TS,) in atenolol ProD 1- 2.
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Figure 21: First order hydrolysis plot of atenolol ProD 1 in (a) 1N HCI, (b) buffer pH 2 and (c)
buffer pH 5.

ATENOLOL PROD 1 KINETIC STUDY

The kinetics of the acid-catalyzed hydrolysis study for atenolol ProD 1 was
carried out in an aqueous buffer in a similar manner to that done by Kirby on N-
alkylmaleamic acids 7-15. Acid-catalyzed hydrolysis kinetics of the synthesized
atenolol ProD 1 was studied in four different aqueous media: 1 N HCI and buffers
pH 2, pH 5 and pH 7.4. Under the experimental conditions, the target prodrug
(atenolol ProD 1) was hydrolyzed to release the parent drug, atenolol, (Fig. 21) as
was evident by HPLC measurements. The reaction displayed strict first order
kinetics as the kops Was fairly constant and a straight line was obtained from a plot
of log concentration of residual prodrug verses time. The rate constant (kops) and
the corresponding half-lives (t;2) for atenolol ProD 1 in the different media were
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calculated from the linear regression equation correlating the log concentration of
the residual prodrug vs. time. The kinetic data, k.,s and t;» values, are listed in
Table 6. Acid-catalyzed hydrolysis of the atenolol ProD 1 was found to be higher
in 1IN HCI than at pH 2 and 5 (Fig. 21). At 1IN HCI the atenolol ProD 1 was
hydrolyzed to release the parent drug in 2.53 hours. On the other hand, at pH 7.4,
the prodrug was entirely stable and no release of the parent drug was observed.
Since the pK, of atenolol ProD 1 carboxylic acid is in the range of 3-4, it is
expected at pH 5 the anionic form of the prodrug will be dominant and the
percentage of the free acidic form that undergoes the acid-catalyzed hydrolysis
will be relatively low. At IN HCI and pH 2 most of the prodrug will exist as the
free acid form, whereas at pH 7.4 most of the prodrug will be in the anionic form.
Thus, the difference in rates at the different pH buffers.

Table 6: First order hydrolysis plot of atenolol ProD 1 in (a) IN HCI, (b) buffer pH 2 and (c)
buffer pH 5

Medium Kons (hours™) t 12 (hours)
1 N HCI 495x10* 2.53
Buffer pH 2 222x107* 3.82
Buffer pH 5 2.75x 10° 133
BufferpH74 | e e

The QM calculations at different levels demonstrated that the efficiency of
atenolol ProD 1- ProD 2 is largely sensitive to the pattern of substitution on the
carbon-carbon double bond and nature of the alkyl group on amide nitrogen.

Using the correlation equation obtained from the plot of the calculated and
experimental EM values the t;, values of two different atenolol prodrugs (ProD
1- ProD 2) were estimated.

Comparison between the calculated t;, values 63.2 hours) for atenolol ProD 1 to
the experimental value (3.82 hours) indicates that while the value obtained by
B3LYP/6-31G (d,p) is overestimated (about 17 times larger than the
experimental) the values obtained by mpwpw91/6-31+G(d,p) were much more
closer 6.3 hours. This discrepancy between the calculated and experimental values
might be attributed to (1) B3LYP/6-31G(d,p) is a DFT method without dispersion
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corrections and (2) PCM solvation model (calculations in presence of water) is
not capable of handling calculations in acidic aqueous solvent (medium) since the
dielectric constant for pH 2 aqueous solutions is not known. In the study,
calculations the value of 78.39 (dielectric constant for pure water) was used
instead.

The ti;» experimental value at pH 5 was 133 hours and at pH 7.4 no
interconversion was observed. The lack of the reaction at the latter pH might be
due to the fact that at this pH atenolol ProD 1 exists solely in the ionized form
(pK. about 3-4). As mentioned before the free acid form is a mandatory
requirement for the reaction to proceed.

Future strategy to achieve more efficient atenolol prodrugs capable of increasing
the liquid formulation stability, eliminating atenolol bitterness and releasing the
parent drug in a programmable manner is: (a) synthesis of atenolol prodrugs
having pKa around 6 (intestine pH) in vitro kinetics for this prodrug will be
performed in at pH 6.5 (intestine) and pH 7.4 (blood circulation system) (iii) in
vivo pharmacokinetic studies will be done in order to determine the bioavailability
and the duration of action of the tested prodrug.

BITTERLESS AMOXICILLIN AND CEPHALEXIN PRODRUGS

Most of the antibacterial agents that are commonly used suffer unpleasant taste
and a respected number of them are characterized with bitter taste. For example,
amoxicillin, cephalexin and cefuroxime axetil have an extremely unpleasant and
bitter taste which is difficult to mask. This is a particular problem in geriatric
patients who cannot swallow whole tablets or when small doses are required.
Even the antibacterial suspension is difficult for pediatrics to administer due to its
better and unpleasant taste. It is widely assumed that the extremely bitter and
unpleasant taste of these antibacterial drugs is due to the formation of
intermolecular force/s between the drug and the active site of the bitter taste
receptor/s. The intermolecular bond/s is/are most likely due to formation either
via hydrogen bond or ionic bond of the amide (in cefuroxime) or amine (in
amoxicillin and cephalexin) group to the active site of the bitter taste receptors.
Antimicrobial agents are classified according to their specific mode of action
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against bacterial cell. By which these agents may interfere with cell wall
synthesis, inhibit protein synthesis, interfere with nucleic acid synthesis or inhibit
a metabolic pathway. They have a broad spectrum of activity against both gram-
positive and gram-negative bacteria. Among these agents: B-lactams- penicillins,
cephalosporins, carbapenems and monobactams. They are preferred because of
their efficacy, safety, and because their activity can be extended or restored by
chemical manipulation. Inevitably, however, their usage has been restricted
because of their bacterial resistance [169-170].

AMOXICILLIN

Amoxicillin is an oral semi-synthetic penicillin, moderate-spectrum, bacteriolytic,
lactam antibiotic used to treat bacterial infections caused by susceptible
microorganisms by which it is susceptible to the action by the B-lactamases.
Amoxicillin has a bactericidal action and acts against both Gram positive and
Gram-negative microorganisms by inhibiting the biosynthesis and repair of the
bacterial mucopeptide wall. It is usually the drug of choice within its class
because it is well absorbed following oral administration. Amoxicillin presents
some outstanding advantages in comparison with other aminopenicillins, such as:
a better absorption from the intestinal tract, better capacity for reaching effective
concentrations at the sites of action and a more rapid capacity for penetrating the
cellular wall of Gram-negative microorganisms. Aminopenicillins are frequently
prescribed agents for the oral treatment of lower respiratory tract infections and
are generally highly effective against S. pneumonia and non- B-lactamase-
producing H. influenza. Amoxicillin is mostly common antibiotics prescribed for
children. It has high absorption after oral administration which is not altered and
affected by the presence of food. Amoxicillin dose reaches Cp,,x about 2 hours
after administration and is quickly distributed, and eliminated by excretion in
urine (about 60%- 75%). The antibacterial effect of amoxicillin is extended by the
presence of a benzyl ring in the side chain. Because amoxicillin is susceptible to
degradation by P-lactamase-producing bacteria, which are resistant to a broad
spectrum of B-lactam antibiotics, such as penicillin; for this reason, it is often
combined with clavulanic acid, a [-lactamase inhibitor. This increases
effectiveness by reducing its susceptibility to B-lactamase resistance. Amoxicillin
has two ionizable groups in the physiological range (the amino group in a-
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position to the amide carbonyl group and the carboxyl group). Amoxicillin has a
good pharmacokinetics profile with bioavailability of 95% if taken orally, its half-
life is 61.3 minutes and it is excreted by the renal and less than 30 % bio-
transformed in the liver [169-172].

CEPHALEXIN

Cephalexin is a first-generation cephalosporin antibiotic, which was chosen as the
model drug candidate to obtain dosage with improved stability, palatability and
attractive pediatric elegance, cost effective with ease of administration.
Cephalosporins are widely used for the treatment of skin infections because of their
safety profile, and their wide range of activity against both gram positive and gram
negative microorganism. Cephalexin is also used for the treatment of articular
infections as a rational first-line treatment for cellulitis. It is a useful alternative to
penicillins hypersensitivity, and is thought to be safe in a patient with penicillin
allergy; but caution should always be taken, that’s because cephalexin and other
first-generation cephalosporins are known to have a modest cross-allergy in patients
with penicillin hypersensitivity. In addition, cephalexin is also effective and used in
the treatment of B-hemolytic streptococcal throat infections. Cephalexin works by
interfering with the bacteria's cell wall formation, causing it to rupture, and thus
killing the bacteria. The compound is zwitterion; contains both a basic and an acidic
group, the isoelectric point of cephalexin in water is approximately 4.5 to 5.
Cephalexin has a good pharmacokinetic profile by which it is well absorbed, 80%
excreted unchanged in urine within 6 hours of administration. Cephalexin’s half-life
is 0.5-1.2 hours and it is excreted via the renal. It is used for the treatment of
infections including otitis media, streptococcal pharyngitis, bone and joint infections,
pneumonia, cellulitis and UTI [173-180].

IN VITRO INTRACONVERSION OF AMOXICILLIN AND CEPHALEXIN
PRODRUGS TO THEIR PARENT DRUGS

Based on our previously reported DFT calculations and on the experimental data
for the acid-catalyzed hydrolysis of amide acids 7-15 (Fig. 10) [58, 93], two
amoxicillin and cephalexin prodrugs were proposed (Figs. 22 and 23,
respectively). As shown in Figs. 22 and 23, the antibacterial prodrugs, amoxicillin
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ProD 1 and cephalexin ProD 1 molecules are composed of an amide acid
promoiety, containing a carboxylic acid group (hydrophilic moiety) and the rest of
the antibacterial prodrug molecule (a lipophilic moiety).
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Maleic anhydride Amoxicillin

Figure 22: Acid-catalyzed hydrolysis of amoxicillin ProD 1.

The combination of both, the hydrophilic and lipophilic groups provides a
prodrug entity with a potential to be with a high permeability (a moderate HLB).
It should be emphasized, that the HLB value of the prodrug entity will be
determined upon the pH of the target physiological environment. In the stomach
where the pH is in the range 1-2, it is expected that prodrugs, amoxicillin ProD 1
and cephalexin ProD 1 will be in a free carboxylic acid form (a relatively high
hydrophobicity) whereas in the blood stream circulation where the is pH 7.4 a
carboxylate anion (a relatively low hydrophobicity) is expected to be predominant
form. Our strategy was to prepare amoxicillin ProD 1 and cephalexin ProD 1 as
sodium or potassium carboxylates due to their high stability in neutral aqueous
medium. It should be indicated that compounds 7-15 undergo a relatively fast
hydrolysis in acidic aqueous medium whereas they are quite stable at neutral pH.

H
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Figure 23: Acid-catalyzed hydrolysis of cephalexin ProD 1.
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The hydrolysis kinetic studies for amoxicillin ProD 1 and cephalexin ProD 1
were carried out in aqueous buffers in the same manner to that executed by Kirby
et al. on maleamic acids 7-15. This is to investigate whether the antibacterial
prodrugs undergo hydrolysis in aqueous medium and to what extent or not,
suggesting the fate of the prodrugs in the system. The kinetics for the acid-
catalyzed hydrolysis of the synthesized amoxicillin ProD 1 and cephalexin ProD 1
were carried out in four different aqueous media: 1 N HCI and pH 2.5, pH 5 and
pH 7.4 buffers. Under the experimental conditions the two antibacterial prodrugs
intraconverted to release the parent drugs (Figs. 24 and 25) as was determined by
HPLC analysis. For both amoxicillin and cephalexin prodrugs, at constant
temperature and pH the hydrolysis reaction displayed strict first order kinetics as
the kons Was quite constant and a straight line was obtained on plotting log
concentration of residual prodrug verves time. The rate constant (kons) and the
corresponding half-lives (t;») for amoxicillin ProD land cephalexin ProD 1 in
the different media were calculated from the linear regression equation obtained
from the correlation of log concentration of the residual prodrug verses time. The
kinetic data for amoxicillin ProD land cephalexin ProD 1 are listed in Tables 7
and 8, respectively. Acid-catalyzed hydrolysis of both, amoxicillin ProD 1 and
cephalexin ProD 1 was found to be much higher in 1IN HCI than at pH 2.5 and 5
(Figs. 24 and 25). At 1N HCI the ty;, values for the intraconversion of amoxicillin
ProD 1 and cephalexin ProD 1 were about 2.5 hours. On the other hand, at pH
7.4, both prodrugs were quite stable and no release of the parent drugs was
observed. At pH 5 the hydrolysis of both prodrugs was too slow. This is because
the pK, of amoxicillin ProD 1 and cephalexin ProD 1 is in the range of 3-4, it is
expected that at pH 5 the anionic form of the prodrug will be dominant and the
percentage of the free acidic form that undergoes an acid-catalyzed hydrolysis
will be relatively low. At 1N HCI and pH 2.5 most of the prodrug will exist as the
free acid form and at pH 7.4 most of the prodrug will be in the anionic form.
Thus, the discrepancy in rates at the different pH buffers.

Table 7: The observed £ value and ¢, of amoxicillin ProD 1 in IN HCl and at pH 2, 5 and 7.4

Medium Kops (h) t12 (h)
1 N HCI 233x10* 2.5
Buffer pH 2.5 9.60x10°° 7
Buffer pH 5 7.55x 10 81
Buffer pH 7.4 No reaction -




238 Frontiers in Computational Chemistry, Vol. 2

Rafik Karaman

Table 8: The observed k value and ¢/, of cephalexin ProD 1 in IN HCl and at pH 2, 5 and 7.4

Medium Kops (h™) t 12 (h)
1 N HCI 241x10* 2.4
Buffer pH 2.5 417x10°7° 14
Buffer pH 5 No reaction -
Buffer pH 7.4 No reaction -

(a) log C (mg/ml) vs. time (h)
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Figure 24: First order hydrolysis plot of amoxicillin ProD 1 in (a) IN HCI, (b) buffer pH 2.5 and

(¢) buffer pH 5.

CONCLUDING REMARKS

Our recent studies on intramolecularity have demonstrated that exploring the
reaction mechanisms for all enzyme models mentioned in this chapter has helped
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Figure 25: First order hydrolysis plot of cephalexin ProD 1 in (a) 1N HCI, (b) buffer pH 2.5 and
(¢) buffer pH 5.

to determine the factors affecting the intramolecular reaction rate. Unraveling the
mechanisms has allowed for better design of efficient chemical devices that have
been utilized as prodrugs linkers that can be covalently attached to active drugs
which can chemically, but not enzymatically, be converted to release the active
drugs in a controlled manner. For example, studying the mechanism for a proton
transfer in Kirby’s N-alkylmaleamic acids (enzyme model) was explored for the
design of a number of prodrugs such as tranexamic acid for bleeding conditions,
acyclovir as antiviral drug for the treatment for herpes simplex [141], atenolol for
treating hypertension with enhanced stability and bioavailability without bitter
sensation [142] and statins for lowering cholesterol levels in the blood [181]. In
addition, prodrugs for masking the bitter taste of paracetamol and antibacterial
drugs such as cefuroxime, amoxicillin and cephalexin were also designed and
synthesized [143]. The role of the linkers in the antibacterial prodrugs is to block
the free amine, which is responsible for the drug bitterness, and to enable the
release of the drug in a controlled manner. Menger’s Kemp acid enzyme model
was utilized for the design of dopamine prodrugs for the treatment for Parkinson’s
disease [182]. Prodrugs for dimethyl fumarate for the treatment psoriasis was also
designed, synthesized and studied [183]. Furthermore, unraveling the mechanism
of Kirby’s acetals has led to the design and synthesis of novel prodrugs of aza-
nucleosides for the treatment for myelodysplastic syndromes [184], atovaquone
prodrugs for the treatment for malaria [112], less bitter paracetamol prodrugs to
be administered to children and elderly as antipyretic and pain killer [139], and



240 Frontiers in Computational Chemistry, Vol. 2 Rafik Karaman

prodrugs of phenylephrine as decongestant [185]. In these examples, the prodrug
moiety was linked to the hydroxyl group of the active drug such that the drug-
linker moiety (prodrug) has the potential to interconvert when exposed into
physiological environments such as stomach, intestine, and/or blood circulation,
with rates that are solely dependent on the structural features of the
pharmacologically inactive promoiety (Kirby’s enzyme model).
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