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PREFACE 

Computational chemistry is a very diverse field spanning from the development and application of 
linear free energy relationships (e.g. QSAR, QSPR), to electronic structure calculations, molecular 
dynamics simulations, and to solving coupled differential equations (e.g. drug metabolism). The 
focus of Frontiers in Computational Chemistry is to present material on molecular modeling 
techniques used in drug discovery and the drug development process. Topics falling under this 
umbrella include computer aided molecular design, drug discovery and development, lead 
generation, lead optimization, database management, computer and molecular graphics, and the 
development of new computational methods or efficient algorithms for the simulation of chemical 
phenomena including analyses of biological activity. In this volume, we have collected nine 
different perspectives in the application of computational methods towards drug design. 

Chapter 1 “The Use of Dedicated Processors to Accelerate the Identification of Novel 
Antibacterial Peptides” reviews the use of modern hardware advances to accelerate the 
identification of new antibacterial peptides. Identification of new antibiotics is of paramount 
importance as bacterial develop resistances to the current compounds used. The authors highlight 
the advantages as well as the difficulties in developing algorithms for Field Programmable Gate 
Arrays and Graphic Processing Units. 

DNA damage by singlet oxygen is a well-known method to mitigate the presence of singlet 
oxygen that remains elusive. In Chapter 2 “Computational Chemistry for Photosensitizer Design 
and Investigation of DNA Damage” the authors review electronic structure methods to aid 
understanding how singlet oxygen damages DNA as well as using what they have learned to aid in 
the design of novel photosensitizers. They review the development of several porphyrin 
photosensitziers based on molecular orbital calculations. 

One challenge in the QSAR field is how to judge the predictive quality of the models. The authors 
of Chapter 3 “How to Judge Predictive Quality of Classification and Regression Based QSAR 
Models?” present a review of validating QSAR models using both traditional and new validation 
metrics. 

In Chapter 4 “Density Functional Studies of Bis-alkylating Nitrogen Mustards”, the authors 
present a review of the application of DFT and DFRT methods on understanding the action of 
nitrogen mustards. Nitrogen mustards are extensively used as a chemotherapeutic agent. 
Identification of new nitrogen mustards is important in order to reduce their cytotoxicity and 
increase their effectiveness. 

The authors of Chapter 5 “From Conventional Prodrugs to Prodrugs Designed By Molecular 
Orbital Methods” review a novel approach in the design of novel prodrugs using molecular 
mechanics and molecular orbital methods. In this approach, the authors review methods in which 
the prodrug is converted into the active drug without the enzyme. 

Chapter 6 “Structural and Vibrational Investigation on a Benzoxazin Derivative with Potential 
Antibacterial Activity” highlights the use of DFT methods along with experimental data to 
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understand the properties and behavior of benzoxazin derivative. The authors present the use of 
scaled quantum mechanical force field methodology and Atomis in Molecules theory to explain 
the vibrational and bonding characteristics in benzoxazin. 

In Chapter 7 “First Principles Computational Biochemistry with deMon2k” the authors present a 
first principles approach to investigating biochemical principles using density functional methods 
with the program deMon2k. Having an all-electron method to explore biochemical and 
pharmacological processes; is an important tool in the computational chemist’s toolbox. 

In Chapter 8 “Recent Advances in Computational Simulations of Lipid Bilayer based molecular 
systems” the authors review computational simulations of lipid bilayers. Cell membranes are a 
complex mixture of lipids and play a vital role in cellular function such as the control of processes 
that cross the cell membranes. A review of several computational methods and complex lipid 
mixtures is presented. 

In this last chapter, “Data Quality Assurance and Statistical Analysis of High Throughput 
Screenings for Drug Discovery”, the authors review high throughput screening (HTS) methods 
bringing to light the challenges to identifying novel molecules from vast and diverse databases. 
The authors also note the use of data from sophisticated biological assays in HTS. 
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CHAPTER 1 

The Use of Dedicated Processors to Accelerate the Identification 
of Novel Antibacterial Peptides 

Gabriel del Rio1,*, Miguel Arias-Estrada1 and Carlos Polanco 
González2,3 

1Computer Science Department, Instituto Nacional de Astrofísica, Óptica y 
Electrónica, Puebla, Puebla, México; 2Departamento de Matemáticas, Facultad de 
Ciencias, Universidad Nacional Autónoma de México. Cd. Universitaria, 04510 
México, D.F. México and 3Subdirección de Epidemiología Hospitalaria y Control de 
Calidad de la Atención Médica, Instituto Nacional de Ciencias Médicas y Nutrición 
Salvador Zubirán, Vasco de Quiroga 15, Col. Sección XVI 14000 D.F. México 

Abstract: In the past decades, the procedure to identify novel antibiotic compounds has 
been motivated by the heuristic discovery of the antibiotic penicillin by Fleming in 1929. 
Since then, researches have been isolating compounds from very wide range of living 
forms with the hope of repeating Fleming’s story. Yet, the rate of discovery of new 
pharmaceutical compounds has reached a plateau in the last decade and this has promoted 
the use of alternative approaches to identify antibiotic compounds. One of these approaches 
uses the accumulated information on pharmaceutical compounds to predict new ones using 
high-performance computers. Such approach brings up the possibility to screen for millions 
of compounds in computer simulations. The better predictors though use sophisticated 
algorithms that take up significant amount of computer time, reducing the number of 
compounds to analyze and the likelihood to identify potential antibiotic compounds. At the 
same time, the appearance of computer processors that may be tailored to perform specific 
tasks by the end of the past century provided a tool to accelerate high-performance 
computations. The current review focuses on the use of these dedicated processor devices, 
particularly Field Programmable Gate Arrays and Graphic Processing Units, to identify 
new antibacterial peptides. For that end, we review some of the common computational 
methods used to identify antibacterial peptides and highlight the difficulties and advantages 
these algorithms present to be coded into FPGA/GPU computational devices. We discuss 
the potential of reaching supercomputing performance on FPGA/GPU, and the approaches 
for parallelism on these platforms. 

Keywords: Antibacterial peptides, FPGA, GPU, high-performance computations, 
parallelism, QSAR, supercomputing. 

*Corresponding author Gabriel Del Rio: Department of Biochemistry and Structural Biology, Instituto de 
Fisiología Celular, Universidad Nacional Autónoma de México, México DF, México; E-mail: 
gdelrio@ifc.unam.mx 
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INTRODUCTION 

The discovery of salvarsan (arsfenamine) in 1901 by Paul Erlich facilitated the 
treatment of syphilis; Erlich proposed the idea of “magic bullets” to explain the way 
this synthetic compound was able to kill the bacteria associated to the disease: a magic 
bullet (salvarsan) traversing along the body in search of its target (bacteria) without 
damaging any other tissue [1]. This discovery promoted the idea of synthesizing 
target-specific compounds as a way to find novel antibiotics. In 1929 penicillin was 
accidentally discovered by Flemming [2] and provided an example of an effective 
antibiotic whose target was unknown at the time of discovery; this in turn promoted 
the development of phenotype screening methods aimed to identify antibiotics by their 
function and not by specific target. These two strategies are still in use; for instance, in 
the period from 1999 to 2008, 28 out of 45 first-in-class new molecules tested by the 
FDA were discovered by phenotype screening methods [3]. Each of these strategies 
has advantages and disadvantages that have been recently reviewed [4, 5] and are out 
of the scope of this review. For any of these strategies, knowledge about the molecular 
mechanism of action of antibiotics is a desirable feature for any drug to be used and 
that implies knowing the target of action; however, many antibiotics approved by the 
FDA are poly-pharmacologic (i.e., act on multiple targets) [6] and such feature 
troublesome the synthesis of new pharmacologic compounds based on specific targets 
[7] because that implies the synthesis of large molecules that tend to be non-permeable 
to cells and not easy to synthesize. 

The recent recognition that polypharmacological compounds are among the most 
effective antibiotics may explain the relatively small number of new pharmaceutical 
compounds approved by the FDA despite the increasing amount of resources 
invested [8]. This has led to a shift in the last decade in the research and 
development strategy of the pharmaceutical industry: focus on strategic therapeutic 
areas and outsourcing with Universities. Among the areas gaining interest in 
pharmaceutical industries are new treatments for bacterial infections. This trend 
constitutes an impulse to explore new strategies to identify new antibacterial 
compounds, especially those obtained from biological means, also referred to as 
biologics. We review the results of a new promising strategy aimed to identify new 
antibacterial compounds combining the knowledge gained from the traditional 
target-based or phenotype-based strategies with computer sciences and technology. 
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ANTIBACTERIAL PEPTIDES 

Antibacterial peptides (APs) are produced by many different organisms and have 
the ability to arrest cell growth (bacteriostatic) or to kill bacteria (bactericidal) [9]. 
Similar to other antibacterial compounds [10], APs act upon different targets in 
bacterial cells [11]: the cell wall, DNA replication machinery and the ribosome; 
furthermore, these peptides not only act on the bacterial cell, but also are able to 
elicit an immune response from the host as part of the innate immune response 
[12]. Furthermore, some APs also have antiviral, antiparasitic and antifungal 
activity that had led to use some APs (e.g., gramicidin S and polymyxin B) to 
treat infections [13]; yet some features of natural APs must first be improved 
before they can be used as therapeutics, including: the high cost of large-scale 
production, stability to proteases, unspecific toxicity against eukaryotic cells, and 
potential development of immunological reactions [14]. Among these, the cost of 
production and toxicity against eukaryotic cells seem feasible to be improved 
simultaneously by producing linear peptides in biological systems [15] and alter 
the physical properties of AP to achieve selectivity towards bacteria [16]. In the 
current review, we analyze the strategies that have been used to identify selective 
antibacterial peptides mainly focus on computational approaches. 

The most abundant APs are cationic antibacterial peptides or CAPs, which are 
relatively short (12-100 residues) and amphiphilic; despite their similar physical 
properties, CAPs share very little sequence similarity and fold into four main 
classes: amphiphilic peptides with two to four β-strands, amphipathic α-helices, 
loop structures, and extended structures [12]. The amphipathic -helical peptides 
are linear and are suitable for large-scale production since these do not require any 
disulfide bond to adopt a functional structure [17]. 

The mechanism of action for any CAP is accepted to require the interaction of the 
peptide with the bacterial membrane, but the basis of their action differs according 
to their final target of action [18, 19] (see Fig. 1): CAPs would approach be 
stabilized around membrane due to their rich composition of Arginine residues, 
which have the ability to interact with both lipid and water; once in contact with 
the membrane, CAPs may disrupt it or pass through it to find its target [20]. 
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Considering the extremely large number of possible peptide sequences, it is 
expected that systematic computational screenings may be performed on small 
peptides (less than 30 amino acid residues). Noticeable, the most active 
antibacterial peptides can be found in peptides of very different lengths (see Fig. 
2; the figure shows only peptides with MIC against Eschericia coli < = 10 M). 
Interestingly, the majority of these peptides have been isolated from the animal 
kingdom, which should display preferential antibiotic activity against bacteria and 
few if any toxicity against animal cells, that is, these may be part of the SCAPs. 

In terms of multiple activities reported for CAPs, it has been noted that these share 
similarities with Cell Penetrating Peptides (CPPs) [27]: both families of peptides are 
cationic, amphipathic and their action depends on the interaction with lipid 
membranes. An important difference is the target membrane and the mechanism of 
interaction of the peptide with the membrane: some CAPs disrupt bacterial 
membrane’s integrity while CPPs pass through mammalian membranes without 
affecting its functionality. Yet, it has been reported that CPPs may have antibacterial 
activity [28, 29] and some CAPs may pass through mammalian membranes like 
CPPs [30]. While it is not clear what is the biological significance of this functional 
redundancy, it has been proposed that the difference in the activity displayed by 
these two families of peptides depends on the ability to adopt a stable three-
dimensional structure in solution and/or lipid membranes [20]. 

Furthermore, natural CAPs not only have the ability to kill bacteria but also to elicit 
immune response in animals [12]. So, by matching properties from peptide sequence 
or structure to its activity it is possible to find some computable features that may be 
related to the diverse activities observed in CAPs: lipid membrane disrupting activity 
and/or lipid membrane penetrating activity and/or recognition of intracellular bacterial 
targets and/or eliciting immune response. In this sense, it is possible to recognize two 
different types of patterns from peptide sequences: those that are conserved at the 
sequence level and others that are conserved at the three-dimensional structure. For 
instance, binding sites may be conserved at the sequence level, while peptide 
partitioning into lipid membranes would be a conserved physicochemical coded in the 
three-dimensional structure of peptides. Thus the use of computational techniques may 
not only assist in the identification of novel SCAPs but also in understanding the 
structure-function relationship of this family of peptides. 
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Here we review some of the computational methods used for the prediction of 
CAPs and their advantages and disadvantages to be coded into dedicated 
processors. 

ALGORITHMS USED TO PREDICT ANTIBACTERIAL PEPTIDES 

Two different paradigms are used in the identification of new CAPs: target-based 
and activity-based approaches. The first one requires knowledge about the target 
molecule while the second one is oriented towards finding patterns associated to 
the activity of the known CAPs. Alternatively, from a mathematical and 
computational perspective, methods that relate chemical structure with biological 
activity can be classified in two main groups: supervised learning and non-
supervised learning [31]. 

Supervised Learning 

This method deduces a stochastic function from a representative sample of 
characteristic elements from the biological pattern searched. The goal of the 
supervised learning is to create, from a set of examples or training data, a function 
capable to predict the value corresponding to any element in study, then from this 
data it has to generalize unseen information. Some representative algorithms in 
this group are: Quantitative Structure Activity Relationships, Hidden Markov 
model, Montecarlo method, Support Vector Machines and Fourier Transforms. 
Particularly, the HPC programming for these methods is the most recommended 
because in most of the occasions the diagram of tasks to be performed are 
independent or semi-independent, which allows you to dramatically reduce 
processing times, to the extent that will cooperatively processors. Within the 
supervised methods, the methods most used in the determination of biological 
profiles are the Quantitative Structure Activity Relationships and Hidden Markov 
models, which are then described in detail, due to their importance. 

Quantitative Structure Activity Relationships (QSAR) 

This model [32] quantifies the physicochemical properties in the element studied, 
characterizing its biological process. A mathematical function built this way can 
be used to predict the response of other chemical structures. This method gives 
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each chemical group parameters, such that, when modifying its chemical structure 
the contribution of each functional group to the pharmaceutical drug or toxic 
substance activity can be evaluated, determining the activity variation of a 
particular substance. 

QSAR modeling generates predictive models correlating biological activity with 
physicochemical properties through statistical tools [33, 34] in QSPR models of 
chemicals with distinctive properties or molecular structure descriptors. QSAR 
are widely used in many disciplines apart from drug discovery and lead 
optimization [35], they are also used in toxicity prediction and regulatory 
decisions [36]. 

The success of any QSAR model depends on the accuracy of the initial data, the 
selection of adequate descriptors, statistical tools and most important the 
validation of the developed model. 

Validation is the process to determine the reliability and importance of a 
procedure for a specific purpose [37]. To validate QSAR models we have to 
thoroughly consider the following aspects: the selection methods of the training 
set components [38]; the criteria to set the size of the training set [37] and the 
impact variable selection will have on the training set model to determine the 
prediction quality. 

There are four main strategies to validate QSAR models [39]: (1) Internal 
validation. (2) Validation by data division in training and testing samples. (3) 
External validation applying the model to outside data. (4) Data randomization. 

The order of complexity in a QSAR model is cO(n), it depends on c the number of 
variables involved. Its computational implementation frequently uses the master-
slave parallelization method that reduces 90% of time compared to processing 
time in a mono-processor. 

QSAR methods have been used to detect antibacterial peptides for quantifying 
contact energy between neighboring amino acids [40], quantifying based on the 
physicochemical properties of amino acids [41, 42], quantifying hydrophobic 
property parameters [43]. Applications range from QSAR models of low-
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molecular weight drugs [44-51], to QSAR/QSPR models for protein and nucleic 
acid sequences [52, 53], protein 3D structure [44, 54], RNA secondary structures 
[55, 56] and of course peptides [57]. The idea has been extended to include also 
Quantitative Proteome-Property Relationship (QPPR) models that personalize 
predictions of drug cardiotoxicity [58, 59], or human prostate cancer [60] based 
on protein composition of blood proteomes. 

Hidden Markov Model [61] 

It is a statistical model where the system being modeled is presumed to be a 
Markov process with hidden (unobserved) states. An HMM can be considered as 
the simplest dynamic Bayesian network. 

The order of complexity in a MM is O(n), as it acts as a dimensional contractor, 
therefore, it does not depend on the variables implicated but on the immediately 
previous state of the components evaluation. However, its computational 
implementation varies in efficiency. Although MC or HMM use the 
parallelization master-slave method to reduce 90% processing time respect to a 
mono-processor, HHMM computational efficiency is only between 30% and 60%. 

HMM has been used for antibacterial peptide detection reproducing 
physicochemical properties [61], protein identification [62], data base searcher 
construction BLAST [63], genes sequence detection [64] or prebiotic scenario 
recreation [65]. The MARCH-INSIDE approach (Markov Chains Invariants for 
Network Simulation and Design) introduced by González-Díaz and collaborators, 
use the Markov Chain theory to infer QSAR/ QSPR models at different structural 
levels. These Markov methods use different types of transition probabilities 
described by atom-atom, nucleotide-nucleotide, amino acid-amino acid, or even 
protein-protein matrices. Two recent in-depth reviews of the field were recently 
published [58, 59]. 

Unsupervised Learning 

In this method the biological model profile is built without previous knowledge of the 
pattern searched, thus the non-supervised learning takes the data inspected and sets it 
in a cluster. The group of representative algorithms from this method is called 
Clustering. This is a highly complex method to implement computationally, although 
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the description of the method is simple, its computational abstraction, demand a high 
level of experience in programming, that implements an HPC platform. This is mainly 
due to the need to update the information of all the nodes and the non-independence of 
tasks has carried out, a typical algorithm of this method is Clustering, which is 
described below. 

Clustering 

It is a principal task [66] of explorative data mining, and a general technique for 
statistical data analysis used in many fields, including machine learning, pattern 
recognition, and bioinformatics [67, 68]. 

Cluster analysis is a general task to be solved. Various algorithms that differ 
significantly in their concept of what forms a cluster and how to find them 
efficiently have been described and we will review some of them. A common 
concept of cluster includes groups with short distances among members, compact 
areas of data space and intervals or particular statistical distribution. Therefore 
clustering can be expressed as a multi-purpose optimization problem. 

Proper clustering algorithm and parameter setting depend on the intended 
application of the results. Cluster analysis is not an automatic task, but a repetitive 
process of knowledge discovery and interactive multi-purpose optimization 
involving trial and error. It will often be necessary to change pre-processing and 
parameters until the result achieves the desired properties. 

Clusters found by different algorithms vary significantly in their properties, to 
understand these cluster models we have to understand the differences between 
different algorithms: (1) Connectivity model: it builds models based on 
connectivity distance. (2) Centroid model: the k-means algorithm represents each 
cluster by a single mean vector. (3) Distribution model: clusters are modeled 
based on statistic distribution, such as the multivariate normal distribution used by 
the Expectation-maximization algorithm. (4) Density model: it defines clusters as 
connected compact regions in the data space. 

DEDICATED PROCESSORS USED TO PREDICT ANTIBACTERIAL 
PEPTIDES 

Predicting novel antibacterial peptides using computational techniques has many 
advantages but also challenges. The nature of the algorithm used and the 
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complexity associated with data processing can lead to long processing times 
often non-convenient for large peptide screenings to be performed in a reasonable 
amount of time; therefore options to accelerate in several orders of magnitude the 
computational load are desirable. From a computational architecture perspective, 
there are only three approaches to accelerate an algorithm: a) use a faster 
processor, b) optimize the algorithm reducing its complexity or finding novel 
ways to solve it and, c) increase the number of instructions processed per clock 
cycle. Option a) has already arrived to a limit where newer computers are not 
increasing their clock speed due to economical limitations (i.e. faster processors 
will run in frequencies close to microwave signals and would require complex 
design and expensive integrated circuit packages and printed circuit boards). The 
second option, is the choice of most of the computer science groups, trying to find 
out new ways to transform a data/problem domain into a less complex domain 
where the total amount of computer instructions is reduced, either by algorithm 
complexity reduction or implementation optimization, but in most cases at the 
expense of some kind of tradeoff, i.e. speed vs. accuracy. The third option is the 
parallel computing choice, that is, increasing the number of computational 
resources that solve simultaneously different parts of the problem or to process 
different parts of the whole data set simultaneously. Even with huge 
supercomputers available to the bioinformatics community, there are additional 
limitations and challenges to parallelize effectively any kind of problem in a 
straightforward way. We will discuss some of those challenges, co-processing 
platforms for acceleration, and some approaches for peptide computation 
acceleration in the following subsections. 

Computational Complexity and Accelerating Algorithm Execution 

As presented in section III, there are several approaches for peptide computational 
research. Not all algorithms can be straightforward parallelized, although there are 
general patterns and strategies to do it. In general, parallelization is guided based 
on how intensive is an algorithm in computations, the amount of data to be 
processed, and the dependencies in intermediate results (i.e. iterative algorithms 
depend on the result of the previous iteration). 

In general, bioinformatics algorithms are common building blocks from 
algorithms already explored by computer science that have been adapted to the 
particularities of bioinformatics. Many techniques to parallelize the algorithms are 
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already in the literature and some have been adapted to bioinformatics [69]. 
Furthermore, the platform to execute a parallel algorithm also guides the approach 
to follow, programming language, fine or coarse partition, etc. 

Some algorithms for peptide search have already been formulated in the context 
of a parallel implementation, for example around Markov models [70]. Since 
Markov models are sequential computations, the parallelization is challenging, 
and proposing a whole framework since the beginning is a good strategy. Other 
algorithms based on relaxation/iterative [71] are complicated to parallelize, so 
high level data partition is a possible choice. Machine Learning algorithms, like 
those based on neural networks [72] or evolutionary algorithms [73] have the 
potential for parallel implementation. Some algorithmic techniques for data post-
processing, filtering, and pre or post data selection [74-76], can also be 
parallelized but the nature of each approach needs to be evaluated individually to 
find the best compromise for acceleration. 

There have been efforts to identify common building blocks for bioinformatics in 
the past [69, 77], where several lessons can be applied to novel algorithms. Many 
of them deal with the sequencing and string matching problem [78, 79] and 
several techniques in parallelization in existing algorithms can be adapted to new 
platforms [80]. 

Parallel Computing Platforms 

The main parallel computation platforms available are: supercomputers, FPGA 
dedicated co-processors, and the use of GPU-Graphic Processing Units, as co-
processors. A brief overview is given in the following subsections with some user 
perspective pros and cons for peptide and in general, for bioinformatics 
exploration. 

Supercomputing 

Supercomputing is the choice for large-scale computational efforts like the human 
genome project. There are current large investments in academia and 
pharmaceutical industry for High Performance Computing (HPC) systems, based 
on traditional arrays of CPU nodes, or nodes with co-processing units (FPGA or 
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GPU, the later more popular since 3-5 years ago due to the price/performance and 
power consumption issues). Multi-node systems has been the mainstream in HPC 
since decades, with more computational power attained with new CPU nodes 
available in each generation, but the limitation is how to program and effectively 
split data/computation in the most efficient way across a multi-node system 
composed of thousands of nodes. In a first approach, the use of supercomputers, 
and in general any cluster of processors could seem straightforward since the 
software already running in a single node could be executed in multiple nodes. A 
first complication arises in the implementation/design on how to partition data 
among nodes and manage the data partition and results gathering. Things 
complicate further if the algorithm requires access the full data set or a subset that 
is spread among several nodes, creating bottlenecks in data transfer that can limit 
the actual global performance. Furthermore, some algorithms require iterate based 
on results generated during processing, and sharing and communicating those 
results to other nodes can complicate data management issues. Several languages 
and software platforms are available to facilitate this, but the user must understand 
the tradeoffs to be able to write efficient programs to do the job. Some 
bioinformatics programs like BLAST [81], that performs multiple sequence 
comparisons, are already ported to multiple nodes/supercomputing efforts where 
teams of several programmers can architect a parallel software, but exploring new 
algorithms on a supercomputer context could be complex for most users. Another 
effort is the proprietary platform from CMD Bioscience [82] for peptide discovery 
that executes on HPC resources, for commercial research. 

Field Programmable Gate Arrays - FPGA 

Field Programmable Gate Arrays are special integrated circuits where digital 
architectures can be configured to cope with user needs by defining specific 
computing architectures. FPGAs are a mature technology used mainly for low to 
medium size production of custom digital electronics for a wide range of 
applications. Two of the largest FPGA manufacturers are Xilinx and Altera. Fig. 3 
shows the internal architecture of an FPGA. The CLB - Configurable Logic 
Blocks, are the actual building units for logic design. The FPGA contains 
hundreds to thousands CLBs inside. The CLBs are basic combinational and 
sequential modules that are user configurable. CLBs are connected among them 
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gates, enough to accelerate 10x to 100x compared to simple processor 
implementation, or 100x to 1000x acceleration if custom processors are designed 
for a particular algorithm. FPGAs is the platform of choice for Reconfigurable 
Computing, an area of computer science focused on proposing custom 
architectures for a particular algorithm, in contrast to traditional computer 
implementation where the algorithm is limited to the fixed architecture of a CPU. 
A custom architecture can accelerate performance since the inherent limitation of 
a general purpose CPU is eliminated with a reduced instruction unit that is 
optimized for the particular algorithm to be executed, reducing the hardware 
resources required, but limiting the flexibility once the architecture is 
implemented in the FPGA. The reconfigurability of the FPGA allows relatively 
fast “programming”, for debugging and fast prototyping, providing an interesting 
balance between flexibility, programmability and hardware acceleration. A 
limitation is the number of custom processors that can fit in an FPGA, so 
acceleration can be gained with parallelism but limited to the actual number of 
units that can be implemented in an FPGA device or set of FPGA devices in a 
platform, as well as other architectural issues when moving large amount of data 
among processors and devices [83]. 

In order to propose a particular architecture to accelerate an algorithm, the user 
has to master architecture design and algorithm design/understanding, so a 
solution can require large amounts of efforts (months to years) to achieve a fully 
functional and optimal solution. Some efforts in component reuse, parametric core 
generation and special HDL that can be used for fast prototyping have focused on 
encapsulating the complexity to allow faster development time, but they have not 
become widespread. For example, the platform created by the company 
Mitrionics allows for bioinformatics development around FPGAs but the 
knowledge is kept inside the company or can be used on particular applications 
were they train people to use the platform. 

Other languages, like Handel-C, were created to accelerate development by 
keeping a standard C syntax and exposing explicitly parallelism to the 
programmer, hiding the design of state machines in the hardware. A recent 
alternative is the use of OpenCL to synthesize FPGA based architectures that can 
be parallelized automatically due to the OpenCL nature. Other high level 
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languages and synthesis approaches, where the complexity is encapsulated into 
semi-automated synthesis tools to generate building blocks for bioinformatics and 
FPGA are reviewed in [84]. 

The potential of FPGAs for bioinformatics algorithm acceleration have been 
explored with several algorithms. For example the basic Smith-Waterman 
algorithm, that is the basis of many bioinformatics algorithms, had shown more 
than 160x acceleration [85] showing the potential of the technology. 

Peptide research has been benefited with FPGA acceleration, in particular in 
peptide sequencing [86] and peptide spectrometry identification [82, 87] that deals 
with large number of comparisons. Some researches have concentrated on the 
parallelization issues, while others on the optimum architecture implementation 
on an FPGA [86], that gives an idea of the complexity of the design with FPGAs 
since the developer needs to master parallel algorithms and architectural design. 

Other FPGA based supercomputing platforms, not limited to bioinformatics, are 
presented in [88]. Bioinformatics algorithm acceleration can be pursued with 
FPGA platforms, but as in the case of Mitrionics approach, it requires investing in 
time and effort to build an efficient workflow for a particular accelerated 
application. For instance, TimeLogic Inc. has developed a suite of bioinformatics 
applications, Decypher, embedded in FPGAs cards to offer mature algorithms 
already accelerated in proprietary modules. 

Graphic Processing Units - GPU 

Another alternative for implementing parallel algorithms are the Graphic Processing 
Units. Traditionally the demands on high performance graphics in personal 
computers have driven the development of the GPUs, in a parallel path to the 
development of the microprocessors. GPUs have evolved of a graphics coprocessor 
to a full computational workhorse with dedicated high speed bus to the CPU with 
highly parallel (from 128 to 1000s) processors to deal with the graphic computations 
of 3D visualization applications, in particular games. Graphic programming also have 
evolved with specialized languages like Open GL, that in the mid-2000s were used to 
program custom parallel programs but with limitations (like double precision 
arithmetic) since the mathematical units in the GPU were simplified only for 
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way of formulating the algorithm to take advantage of the whole potential: on one 
hand, the threads have to be light, i.e. not very long, but they have the flexibility 
of being able to use floating point and single or double precision arithmetic; and 
on the other hand, the programmer has to reformulate carefully the data partition 
of the data set to take in consideration the limitations in the local memory of the 
processing cores, and reduce the number of read/write cycles to the main memory 
as well as data transfers to the host processor, since those are the bottlenecks to 
achieve peak performance. 

Depending on the nature of the algorithm to be accelerated there is a variety of 
techniques to deal with the optimum problem partition, parallelization and data 
gathering. A review of those techniques can be found in [69, 90], and applied to 
GPU programming in [91, 92]. Common bioinformatics algorithms have been 
already ported to GPU, for example [80] presents the BLAST algorithm 
accelerated on a GPU. 

Accelerating Peptide Computation 

Previous work related with Peptide Computation acceleration was carried out 
initially in the spectrometry area to identify peptides, where data obtained from 
spectrometer needs to be compared to a an existing database and where the 
comparison time increases quadratically with the amount of data. Some 
implementations on FPGA architecture for the comparison and the labeling of 
peptides have been described [87, 93], and [94] follows a similar approach but 
with a HPC. 

On the other hand, large scale efforts to build a platform for peptide research and 
discovery is proposed by the company Mitrionics for commercial purposes, so the 
low level details are not given but their approach is based on high level synthesis 
of building blocks for bioinformatics. 

Following the GPU approach, [95, 96] formulates under a parallel SIMD structure 
their algorithms so they can be implemented in GPU. 

Most of the research on peptide discovery does not deal with the acceleration 
requirements and they focus on GPU or cluster/supercomputing implementation 
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to reach the performance required. Another approach considered since the 
beginning the acceleration requirements is discussed in next subsection. 

Our Approach 

In our research, we proposed a design to accelerate the prediction of 
physicochemical properties based on extended algorithms from del Rio [16], that 
has been reported in [97]. As a first approximation, the architecture to accelerate 
the algorithms was developed using Handel-C, and validated on a Xilinx FPGA 
device. The architecture was replicated four times in a medium size FPGA and 
performance was evaluated. Current FPGAs allow more instantiations of the same 
architecture in a single device and there are platforms to build processing systems 
with several FPGAs as co-processing units of a HPC. Therefore an extrapolation 
of the performance that can be achieved is possible. 

In 2011-2012 we did additional explorations implementing the same set of peptide 
algorithms in a modest size GPU with good results, reported in [98]. We have 
observed that the computing time required for different lengths of peptide and 
different GPU models provides an average of 64 Million peptides evaluated in 
around an hour (3400 to 4300 seconds depending on GPU model) (our 
unpublished data). Global memory is not relevant for our implementation due to 
the independent nature of the algorithms that execute in their own private portion 
of the sequence, and is used only for data transfer between the CPU and GPU. 
These results can be extrapolated to the new Kepler architectures and multiple 
GPU on a single node, reducing in an order of magnitude the time. An extended 
implementation in a HPC cluster with GPUs, could reach another two order of 
magnitude time reduction or process more data in the same time. In other words, 
the timing reported could be extrapolated to an additional time reduction of 
1000x, or the possibility of processing 1000x more data in the same time with 
current technology using an HPC cluster. 

Concerning FPGA and GPU performance, we have observed that GPU reaches 
faster processing time and is better suited to deal with large amount of data (our 
unpublished data). The FPGA implementation, although effective, it would be 
complicated to scale to the same amount of parallelism of the GPU since all the 
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data communication and coordination has to be scaled up too, therefore GPU 
would be the technology of choice to continue exploring CAP in our group. 

Discussion 

GPU based computing and the new trend for GPU co-processing in HPC, is an 
opportunity for fast software implementation, exploration and scalability. The 
trend will continue at least for the following 10 years, while FPGA based 
computing could be relegated to other applications where robust algorithms will 
be embedded in specific processing boxes for low cost/high performance 
computing in small laboratories, or for portable applications. From our 
experience, GPU offers the best tradeoff to explore parallel algorithms for peptide 
search, in terms of flexibility, ease of programming, performance and cost. Even 
if additional expertise is required to develop an efficient parallel algorithm in 
GPU, the skills required to develop such expertise are shorter compared to FPGA 
programming. Also, platforms like the Amazon AWS (aws.amazon.com) where 
nodes with GPU co-processing boards can be rented on demand, allow 
accessibility for HPC resources on constrain budgets and the advantage of testing 
in few nodes before scaling to thousands of nodes to accelerate processing. An 
example of Amazon AWS for bioinformatics is reported in [99]. 

Extrapolating our experience with CAP search with length 11 peptides, using a 
400 computers cluster with state of the art GPUs (2012 - Kepler boards), could 
compute all sequences in less than 2 hours, so exploring more complex algorithms 
to refine the selection or compute longer sequences would be feasible in hours to 
days computing time. 

PROSPECTIVE ANALYSIS 

All different methods mentioned to detect and/or predict antibacterial peptides 
vary in their mathematical-computational degree of complexity. The methods 
developed in the last six decades are the first efforts to consolidate Bioinformatics 
and Biomedicine, and it seems this tendency will continue during the next 
decades. It is possible to envision that these disciplines will be combined with 
robotics to generate intelligent “nanorobots” that will “learn” from exhaustive 
transversal analysis about networks and databases. 
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From this first effort we have learnt that consolidation will unfold -as in many 
other disciplines of basic science-, with acknowledgment and regular study of the 
phenomena. Peptide detection and prediction to develop new pharmaceutical 
drugs will also follow the same path. 

We know computational limitations are not an obstacle for any discipline, the real 
obstacle lies in the efficiency of the methods used, directly linked to the regularity 
of the event, its fractality and catastrophic bifurcation points [100, 101]. 

Fractality is a pattern in the dynamics of the phenomenon studied to determine the 
points in time where regularity changes and gives way to a new pattern. It is not 
obvious at first sight but it underlies in every structure and it is used from 
subatomic particle tracking to Universe accelerating expansion. 

How can we understand the construction of 10-6 meter sized “intelligent” 
nanorobots or robotic units that do not recognize regular rhythms in 
microorganism behavior and their interaction in a watery-lipid medium? 

Certainly mathematical-computational methods to detect and predict antibacterial 
peptides will have to be featured by: 

i. Having a greater mathematical orientation to recognize structures with 
O(nn) degree of complexity and being able to identify in massive 
database, irregularities in peptide sequences of diverse length. 

ii. Being a 100% parallelized to run in GPU and FPGA clusters and 
grids, where processing average speed for peptide sequences of 
variable length (< 25aa) is given in tebibytes per second (tebibytes = 
240 bytes), and be perfectly capable to differentiate information to 
avoid unnecessary storage but to learn from it. 

iii. Including membrane and watery lipid interaction from peptide lineal 
sequence reading. 

Next generation of prediction methods will include broader interdisciplinary 
teams, the support of linguists and semiologists will be as necessary as the support 
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of Dynamic system specialists is now for the way databases are designed to keep 
information related to microorganisms and there will be also a substantial 
improvement in the variety of formats to store and access data. 

Furthermore, recognizing the poly-pharmacological nature of APs, it is relevant to 
generate specialized databases of these peptides to study the structure-function 
relationship of APs. For instance, a database for SCAPs may be useful to understand 
the nature of the determinants of peptides capable to preferentially target bacteria 
instead of mammalian membranes. Alternatively, using every known AP may reveal 
the common features associated to every AP, that is, the association of these peptides 
with lipid membranes. This knowledge has to impact on the nature and aim of 
current databases that specialize on antibacterial peptides. 
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CHAPTER 2 

Computational Chemistry for Photosensitizer Design and 
Investigation of DNA Damage 
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Abstract: Computational chemistry can be used for the prediction of photochemical 
reactivity and the design of photosensitizers for cancer phototherapy. For example, the 
activity of a photosensitizer for DNA damage can be estimated from the calculation of the 
HOMO energy of the molecules. In general, DNA damage is mediated by the following 
two processes: 1) photo-induced electron transfer from the DNA base to the photoexcited 
photosensitizer and 2) base modification by singlet oxygen generation through photo-
energy transfer from the photosensitizer to oxygen. The DNA-damaging activity of the 
photosensitizer through electron transfer is closely related to the HOMO energy level of the 
molecule. It has been demonstrated that the extent of DNA damage photosensitized by 
xanthone analogues is proportional to the energy gap between the HOMO level of the 
photosensitizer and that of guanine. In addition, computational chemistry can be used to 
investigate the mechanism of the chemopreventive effect on phototoxicity. Furthermore, 
the molecular orbital calculation is useful to design a photosensitizer in which the activity 
of singlet oxygen generation is controlled by DNA recognition. Singlet oxygen is an 
important reactive oxygen species to attack cancer. The control of singlet oxygen 
generation by DNA is necessary to achieve the tailor-made cancer photo-therapy. Several 
porphyrin photosensitizers have been designed on the basis of the molecular orbital 
calculation to control the activity of singlet oxygen generation. 

Keywords: Ab initio molecular orbital calculation, density functional treatment 
(DFT), DNA damage, electron transfer, highest occupied molecular orbital 
(HOMO), lowest unoccupied molecular orbital (LUMO), molecular mechanics 
calculation, photosensitizer, porphyrin, redox potential, singlet oxygen (1O2), 
Zerner’s intermediate neglect of differential overlap (ZINDO) procedure. 

INTRODUCTION 

Computational chemistry is an important tool to design medical drugs. This  
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method can be applied for the prediction of photochemical reactivity and the 

design of photosensitizers for cancer phototherapy. To examine the photo-

carcinogenicity of drugs, complicated experiments using cells, various chemicals, 

and expensive apparatuses are required. Furthermore, many samples are inversely 

consumed by these experiments. Since computational study does not require such 

samples or apparatuses, this method can reduce the cost and magnitude of the 

task. In addition, computational study can support experimental study. In the case 

of drug design, the prediction of a drug’s characteristics through computational 

study is important chart. Although not all computational studies are simple, 

several studies can be carried out following a relatively simple method. For 

example, the activity of a photosensitizer for DNA damage can be simply 

estimated from the calculation of the highest occupied molecular orbital (HOMO) 

energy of the molecules. In this chapter, several examples of computational 

chemistry for studies in the photobiological field are introduced; the molecular 

design of a photosensitizer is discussed as well. In addition, related applications 

for the photochemistry of porphyrins are also presented. 

Photosensitized Reaction and UVA Carcinogenesis 

Exposure to solar ultra-violet (UV) radiation is undoubtedly linked to skin 
carcinogenesis [1]. It has been well demonstrated in early studies that UVB (280 ~ 

320 nm) radiation, which constitutes about 5% of the solar UV radiation that 
reaches the surface of the earth, directly activates the DNA molecule to generate 
dipyrimidine photoproducts such as cyclobutane pyrimidine dimers and 
pyrimidine (6-4) pyrimidone photoadducts, resulting in mutations and 
carcinogenesis. However, many studies have provided sufficient evidence that 
UVA radiation (320 ~ 400 nm), which accounts for the major portion of the solar 
UV radiation, is also mutagenic and carcinogenic, although it is unlikely that 
UVA directly activates DNA bases to produce dipyrimidine photoproducts [2, 3]. 
It is, therefore, generally recognized that solar UVA carcinogenesis involves a 
mechanism by which UVA radiation indirectly induces DNA damage through 
photosensitized reactions mediated by intracellular chromophores. Accordingly, a 
variety of cellular compounds have been considered to be potential endogenous 
photosensitizers. In addition, certain drugs may act as exogenous photosensitizers. 
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generation of 1O2 from photoexcited sensitizers, resulting in damage to guanines 
without preference for consecutive guanines. In the minor Type II mechanism, a 
superoxide anion radical (O2

•-) is generated, and DNA damage is then induced by 
reactive species generated through the interaction of hydrogen peroxide (H2O2), 
which is formed from the dismutation of O2

•-, with metal ions. Computational 
chemistry can be used to evaluate the activity of photosensitizers. 

Photodynamic Therapy 

Photodynamic therapy (PDT), which is a less invasive treatment for cancer, 
employs a photosensitizer and visible light to produce oxidative stress in cells and 
ablate cancerous tumors [6-8]. PDT is also used for treating some non-malignant 
conditions that are generally characterized by the overgrowth of unwanted or 
abnormal cells. The human tissue has relatively high transparency for visible 
light, especially red light, and visible light hardly demonstrates any side-effects. 
Because 1O2 can be easily generated by visible light, 1O2 is considered as an 
important reactive species of PDT. Critical sites of the generated 1O2 include 
mitochondria and lipid membranes [6-9]. Moreover, DNA is also an important 
target biomolecule of photosensitized reactions [10-13]. Computational study can 
be used for the design of a photosensitizer of PDT. 

RELATIONSHIP BETWEEN THE DNA-DAMAGING ABILITIES OF 
PHOTOSENSITIZERS AND THEIR HOMO ENERGIES 

Computational chemistry is important tool to evaluate the activity of 
photosensitizer. The oxidative activity of photosensitizer depends on the HOMO 
level. Lower HOMO energy level is advantageous for the oxidative electron 
transfer (Fig. 2). The calculation of HOMO energy may be applied to predict the 
activity of various photosensitizers. Thus, the mechanism of DNA photodamage 
induced by xanthone (XAN) analogues (Fig. 3), exogenous photosensitizers and 
the relationship between the DNA-damaging abilities and their HOMO energies 
were investigated. Derivatives of XAN and its analogues, thioxanthone (TXAN) 
and acridone (ACR), have been isolated from various plants [14-18] and used as 
antitumor drugs [19]. The mechanism of DNA damage induced by UVA 
irradiation in the presence of XAN analogues was examined using 32P-labeled 
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Gilbert procedure [21]. It was also measured that the content of 8-oxo-7,8-
dihydro-2’-deoxyguanine (8-oxo-G) [22], an oxidative product of 2’-
deoxyguanosine (dG), formed by photoexcited XAN analogues with an 
electrochemical detector coupled to high-performance liquid chromatography. 
The present study has demonstrated that photoexcited XAN analogues as well as 
riboflavin, a Type I photosensitizer [23], generate piperidine-labile products 
specifically at 5’-G of GG sequence and both guanines of 5’-AGGA sequence in 
double-stranded DNA. Effects of scavengers of reactive oxygen and D2O on DNA 
damage suggested that the contribution of reactive oxygen (Type II mechanism) 
to the DNA photodamage is negligibly small. Therefore, these results can be 
reasonably explained by assuming that nucleobase oxidation is induced by 
photoexcited XAN analogues mainly through electron transfer (Type I 
mechanism) (Fig. 4). Guanine is most easily oxidized among the four DNA bases 
because the oxidation potential of guanine is lower than that of the other DNA 
bases [24-26]. MO calculations have revealed that 5’-G in GG sequence in 
double-stranded DNA significantly lowers the HOMO energy [20, 27]. Therefore, 
the cation radical on the 5’-G in GG sequence arises from either the initial 
electron abstraction of this guanine by photoexcited XAN analogues or through 
charge migration from a relatively distant one-electron oxidized nucleobase [24, 
28-32]. The formed guanine cation radicals may react with water molecules to 
form the C-8 OH adduct radical [24, 28]. This radical may be converted by a 
reducing process into 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyGua) 
residue, a piperidine-labile product [24, 28]. On the other hand, competitive 
oxidation, which may be achieved by molecular oxygen, gives rise to 8-oxo-G 
[24, 28, 33]. The formation of 8-oxo-G causes DNA misreplication that may lead 
to mutations such as G-C → T-A transversion [34, 35]. Although the 8-oxo-G site 
is not efficiently cleaved under piperidine treatment [36], 8-oxo-G can be 
converted into piperidine-labile products (e.g. imidazolone, oxazolone) through 
further oxidation [24, 37, 38]. Imidazolone and oxazolone might be also produced 
through deprotonation of guanine cation radical followed by reaction with 
molecular oxygen [24, 28, 39, 40]. The present study regarding photon fluence 
dependence of DNA photodamage suggests that 8-oxo-G oxidation into 
piperidine-labile products can occur in an irradiation dose-dependent manner. It 
has been reported that imidazolone and oxazolone are major oxidation products of 
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guanine by the Type I mechanism [39, 40]. Imidazolone forms a stable base pair 
with G comparable with the Watson-Crick G-C base pair [37, 38] and may cause 
G-C → CG transversion [41-43]. These transversions can partly explain the 
mutation induced by UVA as previously reported [2]. 
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Figure 4: Possible mechanism of base oxidation at 5’ site of GG sequence in double-stranded 
DNA induced by UVA-irradiated xanthone analogues. 

Relationship between the Calculated HOMO Energy and DNA Damage 

The extents of DNA damage increased depending on the HOMO energies of 
XAN, TXAN and ACR. Fig. 5 shows the plots of the quantum yields of DNA 
damage against the gaps of HOMO energies (ΔE) between the photosensitizers 
and 5’-G of GG. The quantum yield of 8-oxo-G formation (Φ8-oxo-G) was 
estimated using the photon fluence and molar absorption coefficients of XAN 
analogues. Similarly, the relative quantum yield of the piperidine-labile product 
(ΦP) was estimated from the results of the electrophoresis. The logarithm plots 
indicate that the DNA-damaging abilities of these photosensitizers almost 
increased exponentially with ΔE (Fig. 5A). The plots have shown that ΦP is 
almost proportional to Φ8-oxo-G. The electron transfer reaction should also be 
affected by an interaction between DNA and photosensitizer. The absorption and 
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fluorescence spectra of XAN analogues were not significantly changed by 
addition of DNA (data not shown), suggesting that noncovalent bonding to DNA 
can be negligible. Therefore, the quantum yield of the electron transfer reaction 
may be determined by the collision frequency between photoexcited XAN 
analogues and DNA in addition to ΔE. The collision frequency can be determined 
by the diffusion control rate coefficient (kdif), concentration of nucleobase 
([base]), triplet quantum yield (Φisc) and lifetime of excited triplet state (0

T) of 
photosensitizer. Because kdif and [base] can be taken as constants, the collision 
frequency varies depending on Φisc × 0

T. The values of Φisc and 0
T of XAN 

analogues were previously reported [44]. The values of Φ8-oxo-G and ΦP were 
divided by Φisc × 0

T and plotted against ΔE (Fig. 5B). These plots also showed an 
increase of extent of DNA damage exponentially, almost depending on ΔE. 
Strictly, the DNA-damaging ability of the photosensitizer should be determined 
by not only ΔE but also other factors containing the free energy of the electron 
transfer reaction and an interaction between DNA and photosensitizer. However, 
these results suggest that the DNA-damaging abilities of these XAN analogues 
practically depend on their HOMO energies mainly. 

 

Figure 5: Relationship between the DNA-damaging abilities of xanthone analogues and their 
HOMO energies. The quantum yield of 8-oxo-G formation (Φ8-oxo-G) and the relative quantum 
yield of piperidine-labile product (ΦP) by UVA (wavelength: 365 nm) irradiation in the presence 
xanthone analogues (A) and those values divided by (Φisc×0

T) (B) are plotted against ΔE. 
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Summary of the Relationship between DNA-damaging Activity of 
Photosensitizer and the HOMO Energy 

In summary, this study demonstrated that photoexcited XAN analogues, 
exogenous photosensitizers, mediate poly-G-specific DNA oxidation through 
electron transfer. DNA oxidation through photoinduced electron transfer may play 
an important role in photocarcinogenesis mediated by photosensitizers. This study 
has also shown that the DNA-damaging abilities of XAN analogues increase 
exponentially with their HOMO energies. It is concluded that the DNA-damaging 
ability of derivatives of XAN analogues can be roughly estimated from their 
HOMO energies. 

COMPUTATIONAL EVALUATION OF CHEMOPREVENTIVE ACTION 
ON PHOTOSENSITIZED DNA DAMAGE 

Photosensitized damage to biomacromolecules, such as DNA and protein, 

participates in phototoxicity and photogenotoxicity of drugs and solar-UV 

carcinogenesis [1]. Various endogenous molecules and natural products act as 

photosensitizers [23, 24, 45-49]. In addition, a side effect of PDT [6] is also 

caused by photosensitized biomacromolecular damage. An antioxidant can 

scavenge reactive oxygen species generated through photosensitized reaction and 

protect against cancer occurrence [50]. For example, β-carotene is an efficient 

scavenger of 1O2. However, β-carotene, vitamin A, and vitamin E generate 

reactive oxygen species through the oxidation process, leading to oxidative DNA 

damage [51, 52]. Indeed, an excess amount of these antioxidants elevates cancer 

incidence [53-55]. A physical sunscreen does not show a side effect, but cannot 

effectively protect the phototoxicity induced by visible-light. It has been 

demonstrated that the photoexcited pteridine moiety of folic acid is effectively 

quenched by the aminobenzoyl moiety through intramolecular electron transfer, 

resulting in the inhibition of DNA photodamage by the photoexcited folic acid 

[48]. This result leads us to the idea that an effective quencher can be used as a 

chemopreventive agent for photodamage of biomacromolecules. In this study, the 

action of XAN derivatives (bellidifolin (BEL), gentiacaulein (GEN), 

norswertianin (NOR), and swerchirin (SWE)) (Fig. 6) on photosensitized DNA 
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damage was demonstrated. These XAN derivatives were isolated from various 

plants [56-60]. The preventive effects of XAN derivatives on DNA damage by 

photoexcited riboflavin were examined. The mechanism of the preventive effect 

on DNA photodamage was investigated by ab initio MO calculations [61]. 

 

Figure 6: Structures of xanthone derivatives. 

Calculation of Excited Triplet State Energies and Ionization Potentials of 
Xanthone Derivatives and Riboflavin 

The excited triplet state energies of XAN derivatives and riboflavin were 

estimated from the density functional treatment (DFT) at the B3LYP/6-31G* 

level. The ionization potentials (IPs) of XAN derivatives and riboflavin were 

estimated from ab initio MO calculation at the Hartree-Fock 6-31G* level. The 

structures of these molecules were optimized by the calculation of equilibrium 

geometry at the Hartree-Fock 6-31G* level. These calculations were performed 

utilizing Spartan’02 for Windows (Wavefunction Inc.). The energies of an excited 

triplet state (ET) of XAN derivatives were higher than those of riboflavin (Table 1), 

suggesting that XAN derivatives cannot quench the excited riboflavin through 

excitation energy transfer. The calculated IPs of BEL, GEN, NOR, and SWE 

were larger than those of riboflavin (Table 1), suggesting that the electron transfer 

from XAN derivatives to photoexcited riboflavin is possible. These results have 

shown that the excited triplet state of riboflavin can be quenched through electron 

transfer from XAN derivatives and subsequent reverse electron transfer. 
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Table 1: Calculated triplet energy and IPs of xanthone derivatives and riboflavin 

Compounds ET / kcal mol-1 IP / eV 

BEL 68.40 8.11 

GEN 70.27 8.14 

NOR 66.98 8.14 

SWE 70.74 8.20 

XAN 79.52 8.57 

Riboflavin 57.00 8.80 
ET: Energies of excited triplet state of compounds calculated from ab initio MO method. 

Experimental Results of Preventive Effect of Xanthone Analogues on DNA 
Damage Photosensitized by Riboflavin 

XAN derivatives, BEL, GEN, NOR, and SWE, inhibited DNA damage induced by 
photoexcited riboflavin. Photoexcited riboflavin oxidizes specifically at the 
underlined G of 5’-GG and 5’-GGG sequences in double-stranded DNA through 
photoinduced electron transfer (Type I mechanism). The underlined G in the 5’-GG 
and 5’-GGG sequences acts as a hole-trap [20, 27] and is finally oxidized through 
hole-transfer [62]. These photosensitizers generate 8-oxo-G and piperidine-labile 
products, such as imidazolone and oxazolone, at consecutive G residues [23, 63]. 
The piperidine-labile products can be generated via further oxidation of 8-oxo-G. 
These photoproducts cause mutation and/or cancer [34, 35, 37, 38, 41, 42]. A 
qualitative evaluation by the electrophoresis showed that GEN and NOR act as a 
protector for piperidine-labile DNA photodamage, whereas the preventive action of 
BEL and SWE is very weak. The preventive action of these XAN derivatives was 
evaluated quantitatively by the inhibitory effect of 8-oxo-G formation by 
photoexcited riboflavin (Fig. 7). The preventive action of XAN derivatives increased 
in the following order: GEN > NOR >> BEL > SWE. Especially, 5 µM GEN 
completely inhibited 8-oxo-G formation by 50 µM riboflavin. These findings have 
shown that GEN can act as most effective chemopreventive agent for 
photosensitized DNA damage among the four XAN derivatives. 

Mechanism of the Preventive Effect 

Spectroscopic studies have shown that these compounds cannot act as a physical 
sunscreen. The fluorescence intensity of riboflavin was less affected by addition of 
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XAN derivatives. These findings exclude the interaction between the ground state of 
riboflavin and XAN derivatives and the quenching of the excited singlet state of 
riboflavin. The possible mechanism of the prevention of the DNA photodamage is 
the quenching of the excited triplet state of riboflavin (Fig. 8). MO calculations have 
shown that, although the quenching through energy transfer is impossible, the 
mechanism through electron transfer is possible. The electron transfer from XAN 
derivatives to the excited triplet state of riboflavin generates a radical ion pair, and 
reverse electron transfer regenerates a ground state of riboflavin and XAN 
derivative. The excitation energy of the photosensitizer is dispersed as thermal 
energy through this quenching mechanism. The τ0

T of riboflavin is 22 µs in aqueous 
media [64]. The rate constant of quenching reaction of triplet excited state of 
riboflavin is required to be the magnitude at least comparable to the decay rate 
constant (1/τ0

T = 4.5 × 104 s-1). The value of this rate constant is close to that of the 
diffusion control reaction rate constant (kdif) in this experimental condition. The 
value of kdif can be estimated from following equation: 

kdif = 8RT[Q]/3η (1) 

where R, T, [Q], and η are gas constant, absolute temperature, concentration of 
XAN derivatives, and viscosity of water (8.91 × 10-4 kg m-1 s-1), respectively. 
Therefore, the excited riboflavin should be quenched by XAN derivatives in the 
diffusion control process. 

 

Figure 7: Effects of xanthone derivatives on the formation of 8-oxo-G by photoexcited riboflavin. 
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Figure 8: Mechanism of chemopreventive effect of xanthone derivatives on DNA photodamage 
by riboflavin. 

Summary of the Mechanism of Chemoprevention for Phototoxicity 

In summary, this study demonstrated that XAN derivatives prevent DNA damage 
by photoexcited Type I photosensitizers by quenching of the excited triplet state 
of a photosensitizer. This chemopreventive mechanism is not based on 
antioxidation or the effect of sunscreen. This preventive mechanism may be used 
for the novel chemoprevention of phototoxicity, photogenotoxicity, and solar 
carcinogenesis. An antioxidant, such as β-carotene, can scavenge reactive oxygen 
species generated through photosensitized reaction and protect against cancer 
occurrence [50]. However, β-carotene, vitamin A, and vitamin E generate reactive 
oxygen species through the oxidation process, leading to oxidative DNA damage 
[51, 52]. Indeed, an excess amount of these antioxidants elevates cancer incidence 
[53-55]. Although this study does not exclude the possibilities of actions as 
antioxidant or sunscreen by XAN derivatives, these results have shown that XAN 
derivatives act as effective quencher and protect photosensitized DNA damage. 
The quenching mechanism of an excited photosensitizer does not lead to the 
formation of a secondary reactive species. Furthermore, this quencher can protect 
from the phototoxicity induced by visible-light, which is difficult to shade with a 
physical sunscreen. 
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Figure 9: Scheme of the formation of strongly fluorescent pteridines through ROS-mediated 
decomposition of folic acid analogues. 

COMPUTATIONAL INVESITIGATION OF FLUORESCENCE PROBE 
FOR REACTIVE OXYGEN DETECTION 

Next topic is the evaluation of the possibility of molecules for fluorescence probe to 
detect reactive oxygen species (ROS) (Fig. 9). Molecular probes and molecular 
biosensors for ROS are important in environmental and bioanalytical sciences  
[65-68]. The modification of biomacromolecules upon exposure to ROS, including 
H2O2, O2

•-, •OH, and 1O2, is the likely initial event involved in the induction of the 
mutagenic and lethal effects of various oxidative stress agents [69-73]. Therefore, 
the activity of ROS generation by various compounds is closely related to their 
toxicity, carcinogenicity, or both. H2O2 is a long-lived ROS and plays an important 
role in biomacromolecular damage induced by various chemical compounds [71-
73]. As mentioned above, 1O2 is also an important ROS and can mediate the 
oxidative degradation of many molecules [65-68]. The detection of 1O2 and 
determination of the quantum yield of 1O2 generation (Ф∆) by a photosensitizer are 
necessary to evaluate the PDT activity or phototoxic risk of photosensitizers. The 
measurement of the near-infrared emission through a deactivation process of 1O2 is 
sensitive and one of the most important methods to detect 1O2 [73-75], but this 
method requires the use of costly apparatuses. Another sensitive method for 1O2 
detection is fluorometry using a molecular probe, which is the less fluorescent 
precursor of the fluorescent molecule [76-79]. Fluorometry is very sensitive and 
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useful method for other ROS including H2O2. In general, the sensitive fluorometry 
of ROS requires costly fluorescent probe compounds. In this section, the fluorometry 
of H2O2 and 1O2 (photosensitized 1O2 generation) using folic acid and its 
commercially available less fluorescent analogue, N-[4-[[(2,4-diamino-6-
pteridinyl)methyl]methylamino]benzoyl]-L-glutamic acid (methotrexate; MTX,  
Fig. 10) [80], was investigated. UV light or a photosensitized reaction causes the 
oxidation of folic acid, leading to the formation of pterine-6-carboxylic acid (PCA) 
and aminobenzoyl-L-glutamic acid (ABG) [48, 81-84]. The fluorescence intensity of 
PCA is strong, although folic acid itself scarcely fluoresces [48, 85]. This 
fluorescence enhancement mechanism is similar to that of fluorescence probes to 
detect ROS and reactive intermediates of peroxide. Such a character of folic acid led 
us to hypothesize that the fluorescence analysis of decomposed folic acid could be 
used as an indicator of oxidative stress. The determination method of Ф∆ using these 
molecules is also reported [85]. 

Calculation of the Molecular Orbital Energies of Folic Acid and MTX 

The MO energy level of folic acid and MTX was estimated from the ab initio MO 
calculation at the Hartree-Fock/6-31G* level. The structures of these molecules were 
also optimized by this calculation. The order of the energy levels of MO in the 
ground state was calculated by this method to estimate the electron transfer direction 
in the photoexcited state. This calculation was performed utilizing Spartan’06. 
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Figure 10: Structures of folic acid and methotrexate. 
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Figure 12: Strategy for the ROS detection using folic acid analogues. 

scarcely fluoresces, PCA shows strong fluorescence in the visible-light region. 
The fluorescence quenching of folic acid is due to the aminobenzoyl moiety [48]. 
Folic acid was decomposed by H2O2 in the presence of Cu(II) and increased the 
fluorescence intensity in a dose-dependent manner. At pH 7.6, folic acid exhibited 
optimum stability [90], and the sensitivity was independent on pH in the range 6.0  
~  8.0. The limit of detection (LOD; at S/N=3) for H2O2 was 0.5 μM under this 
experimental condition. The fluorescence intensity of folic acid was not increased 
by H2O2 without the metal ion, indicating that H2O2 itself does not decompose 
folic acid. Two scavengers of •OH, ethanol and mannitol, showed an inhibitory 
effect on the decomposition of folic acid but could not completely inhibit the 
decomposition. H2O2 and Cu(II) are considered to generate other reactive species, 
including copper-peroxo intermediates, which are less reactive than •OH [70]. 
Relevantly, a reactive species generated from H2O2 and Cu(II) cannot be 
completely quenched by typical •OH scavengers but effectively damages 
biomacromolecules, such as DNA [70, 91, 92]. 

Folic acid was slightly decomposed by H2O2 plus Fe(II). The decomposition of 
folic acid mediated by Fe(II) was completely inhibited by •OH scavengers, 
suggesting the involvement of •OH generated through the Fenton reaction. Since 
the lifetime of •OH is very short [93, 94], •OH cannot effectively decompose folic 
acid. Other metal ions, such as Ca(II), Mg(II), Fe(III), Co(II), Ni(II), Ag(I), Pd(II), 
and Au(III), did not mediate the decomposition of folic acid by H2O2. The 
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selectivity of metal ions is due to the activation of H2O2. The effect of 
fluorescence quenching by these heavy metal ions is negligible. Superoxide from 
KO2 and sodium hypochlorite plus H2O2, a 1O2 source, did not induce the 
fluorescence enhancement of folic acid. These findings demonstrate that folic acid 
can be selectively used for the fluorometry of H2O2 in the presence of Cu(II). The 
concentration of H2O2 ([H2O2]) can be determined by a calibration curve method. 

 

Figure 13: Absorption and fluorescence spectra of folic acid and related compounds. PCA: Pterin-
6-carboxylc acid. ABG: Aminobenzoyl-L-glutamic acid. 

 

Figure 14: Fluorescence enhancement of methotrexate by 1O2 generated through photosensitized 
reaction of methylene blue. 
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Experimental Results of Fluorometry of Singlet Oxygen Generated by 
Photosensitized Reaction Using Folic Acid Analogues 

Singlet oxygen generated via photosensitized reaction decomposes less-
fluorescent folic acid and MTX, leading to the formation of a strongly fluorescent 
pteridine compound in D2O (Fig. 14). This method can be applied to determine 
the ФΔ of photosensitizers absorbing visible light. One of the most important 
applications of the photosensitized reaction is PDT, in which a water-soluble 
photosensitizer absorbing visible light is necessary. The determination of ФΔ is 
required to evaluate the activity of the PDT photosensitizer. In addition, the value 
of ФΔ is important for the risk evaluation of phototoxic materials and various 
other studies about the photochemical oxidation process. In many cases, the 
determination of ФΔ of the water-soluble photosensitizer was carried out in D2O, 
because the detection of 1O2 is easier due to its longer lifetime than that of H2O. 
The present method can be simply performed for these purposes without an 
expensive apparatus and reagent. 

Summary of the Examination of Reactive Oxygen Probe 

Reactive species generated from H2O2 and Cu(II) or 1O2 generated through 
photosensitized reaction oxidized folic acid and MTX, leading to the cleavage of 
the C9-N10 bond and the formation of strongly fluorescent pteridine. These 
findings demonstrate that folic acid analogues could be used for the fluorometry 
of ROS. The reactive species from H2O2 and Cu(II), such as copper-peroxo 
intermediates [70, 91, 92], are much more reactive than H2O2 and are considered 
to play important roles in the damage to biomacromolecules. Since the 
fluorescence quantum yield of pteridine, such as PCA, is markedly larger than 
that of folic acid analogues [48, 95], this analysis is sensitive to H2O2 detection. 
This method can be applied to the detection of small amounts of H2O2 generated 
from a carcinogenic compound. In addition, the ФΔ of the water-soluble 
photosensitizer could be determined using the folic analogues. 

COMPUTATIONAL STUDY OF THE PHOTOCHEMICAL PROPERTY 
OF BERBERINE AND PALMATINE 

Photosensitized generation of 1O2 contributes to phototoxicity and 
photocarcinogenesis [70, 96-98]. Furthermore, this process is important in the 
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medical application of photosensitized reactions such as PDT [6-8]. Critical sites 
of the generated 1O2 include mitochondria and lipid membranes [6-8, 65, 99]. 
Moreover, DNA is also an important target biomolecule of photosensitized 
reactions [63, 70, 72]. Since the administered photosensitizers necessarily interact 
with cellular components, the photosensitized reaction occurs in a 
microenvironment consisting of biomolecules [100]. Therefore, the interaction 
between biomolecules such as DNA and photosensitizers plays an important role 
in the photosensitized reaction and may be applied to the control of the activity of 
PDT photosensitizers [101]. Berberine and palmatine (Fig. 15) are the alkaloid 
constituents of Goldenseal (Hydrastis canadensis L.) [102], and display cytotoxic 
activities against various human cancer cell lines [103]. Their phototoxicity and 
DNA-photodamaging abilities have been also reported [71, 104, 105]. These 
alkaloids bind to the DNA [106-109] and form the fluorescent intermolecular 
complexes [71, 110] with DNA. It has been reported that berberine binds 
preferentially to AT-rich minor groove [108], and the binding property of 
palmatine consistent with a mixed-mode DNA binding model in which a portion 
of the ligand molecule intercalates into the duplex, while the nonintercalated 
portion protrudes into the minor groove [107]. The DNA-binding interaction 
changes their photochemical property and markedly enhances the fluorescence 
intensity of these alkaloids. Their chemical property is useful in designing an 
experimental system to clarify the environmental effects of DNA, one of the most 
important biomaterials, on a photosensitized reaction. Moreover, the 
microenvironmental effect of the DNA strand should be one of the key factors in 
controlling the activity of photosensitizers, of which the target biomolecule is 
DNA. In this study, the photosensitized 1O2-generation activity and the 
photochemical property of these alkaloids were examined. 

 

Figure 15: Structures of berberine and palmatine. 
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Calculations of Intermolecular Complex between DNA and the Alkaloids 

The equilibrium geometry of an intermolecular complex between double-stranded 
DNA and berberine or palmatine was obtained by molecular mechanics calculation 
utilizing the Spartan 04’. The geometry of 20-mer of double-stranded DNA was 
constructed using Spartan 04’. The absorption transitions of these alkaloids binding 
to DNA were calculated by the semi-empirical Zerner’s intermediate neglect of 
differential overlap (ZINDO) procedure utilizing the CAChe WorkSystem Pro 6.0 
(Fujitsu Ltd. 2003, Tokyo, Japan). The energy of their orbital was estimated by DFT 
(B3LYP/6-31G*) calculation utilizing the Spartan 04’. 

 

Figure 16: Experimental and calculated absorption spectra of berberine. The sample contained 50 
M berberine or palmatine in sodium phosphate buffer (pH 7.6) (A). The calculated spectrum of 
the isoquinoline compound (B). 
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The ZINDO calculation indicated that this absorption band is due to the excitation 

of the isoquinoline moiety of berberine and palmatine (Fig. 16). The absorption 

spectra of DNA-binding photosensitizers were estimated from the subtraction of 

the absorption spectra of free photosensitizers from those of DNA containing 

photosensitizers (Fig. 17). The binding ratio was calculated from the binding 

constants and the DNA concentration. The obtained spectra of these alkaloids 

showed a large red shift through the complex formation with DNA in an aqueous 

solution. The long wavelength absorption maxima (berberine: 449 nm, palmatine: 

445 nm) were similar to those in dichloromethane. This large red shift could not 

be explained by the reduced polarity effect of DNA microenvironment, in which 

the polarity of surroundings is almost the same as that of ethanol [111]. ZINDO 

calculation of absorption spectra of the alkaloids interacting with phosphate anion 

of DNA showed a large red shift (Fig. 18), suggesting that the spectral shifts by 

the DNA binding was due to the electrostatic interaction. Moreover, the ZINDO 

calculation showed that the structure change of these photosensitizers by the 

binding to DNA scarcely affected their spectra. 

 

Figure 17: Absorption spectra of berberine and the complexes with DNA. The sample contained 
50 μM berberine (A) in the presence of 200 bp-μM calf thymus DNA in sodium phosphate buffer 
(pH 7.6). The absorption spectrum of free berberine (B) in the above sample was calculated from 
the binding constant and concentrations of berberine and DNA. The absorption spectrum of the 
DNA-berberine complex was estimated from the subtraction of the spectrum of free berberine 
from that of DNA containing sample (C). 
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Figure 19: Near-infrared emission spectra from photo-irradiated berberine. 

observed during photo-irradiation of the DNA-photosensitizer complexes. In the 
absence of DNA, the photo-irradiated berberines showed no emission around 
1270 nm in aqueous solution. These findings have demonstrated that photoexcited 
berberines can generate 1O2 only when the DNA-photosensitizer complex is 
formed (Fig. 19). This study showed that the microenvironment of the DNA 
strand activates the 1O2 generation of the photosensitizer. The S1 state of these 
alkaloids immediately returns to the ground state via a nonradiative mechanism 
[104, 105]. This rapid deactivation should be the reason for the decreased 1O2 
generation by photosensitized berberine and palmatine in an aqueous solution 
(Fig. 20). The measurement of the fluorescence decay demonstrated that the 
DNA-binding interaction stabilizes the photoexcited states of berberine and 
palmatine, resulting in the enhancement of their S1 lifetimes. The ZINDO 
calculation showed that the S1 state is produced by an excitation of their 
isoquinoline moieties. The DFT calculation showed that their HOMOs are 
localized on their dimethoxybenzene moieties. Therefore, the S1 of berberine and 
palmatine can be quenched through intramolecular electron transfer from their 
dimethoxybenzene moieties. An inhibition of the intramolecular electron transfer 
can increase the lifetime of the photoexcited states of these photosensitizers. The 
spectral measurements suggest that the photochemical property of these 
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photosensitizers is mainly affected by the electrostatic interaction with anionic 
polymer DNA. The electrostatic interaction between the positive charge of the 
alkaloids and the negative charge of the phosphate group of DNA should increase 
the energy levels of the isoquinoline moieties of berberine and palmatine. The 
large red shift of their spectra of these alkaloids by the DNA binding is possibly 
due to the electrostatic interaction. Therefore, the levels of the CT states are raised 
through this interaction, leading to the inhibition of the intramolecular electron 
transfer and a prolongation of their photoexcited states. Consequently, the 
intersystem crossing yields of these alkaloids should be increased by the DNA-
binding, resulting in the enhancement of the energy transfer to 3O2. In the 
processes of intersystem crossing and 1O2 generation, magnetic interactions 
including spin-orbit coupling is important [112, 113]. 

 

Figure 20: Mechanism of activity control of berberine and palmatine through interaction with 
DNA. 
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where 3Sens* is the triplet excited state of these alkaloids and Sens•+ is the radical 
cation of these alkaloids. The electron in the equations (4) and (5) can be provided 
by O2

•- or endogenous metal ions, such as Fe(II) and Cu(I). In addition, DNA 
photodamage by berberine and palmatine through the Type I mechanism may be 
possible from the energetically point of view [116]. However, the patterns of 
DNA damage photosensitized by berberine and palmaine were quite similar to 
that by the Type II mechanism [71]. Photoexcited berberine and palmaine 
oxidized DNA at every guanine residue and other bases were not damaged. O2

•- 
and H2O2 themselves cannot induce DNA damage without metal ions, and •OH 
damages DNA at every base [4, 5]. H2O2 induces the oxidation of thymine, 
cytosine, and guanine in the presence of copper ion [91, 92]. In the case of the 
Type I mechanism, consecutive guanines, such as underlined G of 5’-GG and 5’-
GGG, are selectively damaged [4, 5, 63]. These results suggest that 1O2 is the 
predominant reactive species responsible for DNA photodamage by these 
alkaloids. 

Conclusion of the Controlled Generation of Singlet Oxygen by Berberine and 
Palmatine 

This study demonstrated that berberine and palmatine bind to DNA, and their 
activity in the photosensitized 1O2 generation is markedly enhanced. This study 
showed that the electrostatic interaction with a DNA strand can change the 1O2 
generation activity of photosensitizers. Singlet oxygen is the major oxidative and 
damaging species formed during the Type II process of photosensitization and 
plays an important role in the PDT process. It has been reported that 1O2 is able to 
induce the oxidation of cellular DNA. 1O2 can diffuse in a very short distance 
during its lifetime, which is much shorter in the cell (0.01 ~ 0.2 µs) than in simple 
aqueous solutions (2 ~ 4 µs) [65, 117]. Therefore, the contact of a photosensitizer 
with biomacromolecules, such as DNA, is very important. In addition, control of 
key therapeutic parameters, including 1O2 generation level, is also important and 
optimized synthetic procedures of PDT photosensitizers have been developed 
[101, 118]. This mechanism through the interaction with DNA microenvironment 
may be applicable to the activity control of the PDT photosensitizers. 
Computational study played the important role in the speculation of the 
mechanism of the controlled generation of 1O2 by berberine and palmatine. 
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MOLECULAR DESIGN OF PORPHYRIN PHOTOSENSITIZERS FOR 
CONTROL OF SINGLET OXYGEN GENERATION THROUGH 
INTERACTION WITH DNA 

Computational chemistry is useful to design the photosensitizer for PDT. As an 
anti-cancer agent, DNA is one of the most important target biomacromolecules, 
and DNA-targeting drugs have been extensively studied [119, 120]. An important 
mechanism of PDT is the oxidation of biomacromolecules by 1O2, which is 
generated through energy transfer from the excited photosensitizer to molecular 
oxygen. A DNA-selective photosensitizer should be developed to improve the 
treatment effect [101, 121-123]. The control of 1O2 generation by a specific DNA 
sequence using photosensitizer/quencher/oligonucleotides systems has been 
studied [101, 121, 122]. The demonstrated principle is selectively placing the 1O2 
photosensitizer close to a molecule that can be quench the excited state of the 
photosensitizer by using a positioning system that can then be manipulated to 
change the distance between photosensitizer and the quencher. Furthermore, the 
pH regulated 1O2 photosensitizer/quencher/DNA i-motif system was reported 
[123]. As mentioned above, berberine and palmatine, which can easily bind to 
DNA through electrostatic interaction and generate 1O2 only when the DNA-
photosensitizer complex is formed [71, 75]. The interaction changes their redox 
potentials and suppresses the quenching by intramolecular electron transfer, 
resulting in the elongation of the lifetime of the photoexcited state, making the 
energy transfer to molecular oxygen possible [75]. Berberine and palmatine can 
act as a DNA-targeting photosensitizer, and guanines are specifically oxidized 
through 1O2 generation. However, these photosensitizers cannot absorb long-
wavelength light, which is advantageous for PDT. Thus, on the basis of this 
controlling mechanism of 1O2 generation, a porphyrinoid photosensitizer, which is 
important for clinical use because of its high absorptivity for the red region (> 630 
nm) was designed and synthesized [124]. 

Molecular Orbital Calculation for Design of Photosensitizer 

The equilibrium geometry of porphyrin and its MO energy were estimated from 
the ab initio MO calculation at the Hartree-Fock/6-31G* level utilizing the 
Spartan 08’. Fig. 21 shows the molecular structure and the MO of the synthesized 
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Design and Synthesis of Water-soluble Porphyrin for the Control of the 
Singlet Oxygen Generation by DNA 

As predicted by the computational study, the singlet excited state of An-TPyP is 

effectively quenched through intramolecular electron transfer from the anthracene 

moiety [124]. The interaction with DNA suppresses the intramolecular electron 

transfer, resulting in the elongation of the lifetime of the photoexcited state. This 

elongation enhances the intersystem crossing and makes the photoenergy transfer 

to molecular oxygen possible. The activity control of porphyrinoid 

photosensitizers for PDT through an interaction with DNA should provide a 

possible increase in the selectivity for targeting DNA. Although An-TPyP can act 

at pH 2 ~ 3, which is not a normal physiological pH, this study demonstrated the 

activity control of an electron-donor connecting porphyrin by DNA. The next step 

is the design of porphyrinoid photosensitizer, whose activity can be controlled 

through interaction with DNA in water of physiological pH. Thus, the electron 

donor-connecting porphyrin, meso-(1-pyrenyl)-tris(N-methyl-p-pyridinio) 

porphyrin (Py-TMPyP, Fig. 25) [127], was designed and synthesized. The MO 

calculation was performed at the Hartree-Fock 6-31G* level to predict the 

photophysical property of the porphyrinoid photosensitizer. This calculation 

showed that the photoexcited state of Py-TMPyP can be deactivated via 

intramolecular electron transfer from the pyrene moiety to the porphyrin moiety, 

forming a CT state. The interaction with DNA predicts a raise in the CT state 

energy, leading to the recovery of the photochemical activity. 

 

Figure 26: Absorption spectra of Py-TMPyP with or witout DNA. 
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infrared emission was effectively diminished by sodium azide, a physical quencher 
of 1O2. The ФΔ was estimated from the comparison of the emission intensity by Py-
TMPyP-DNA and that of methylene blue [126]. The apparent values of ФΔ by Py-
TMPyP-DNA were 0.051 and 0.038 in the presence of 50 μM-bp AATT and AGTC, 
respectively. Thus, the photosensitized 1O2 generation by Py-TMPyP became 
possible through the interaction with DNA. Because 1O2 generation occurs near 
DNA, the generated 1O2 should interact with the DNA strand. AT sequences quench 
1O2 through mainly a physical mechanism with the rate constant of 4.1×105 M-1s-1 
[128], whereas guanine can quench 1O2 through a chemical process (guanine 
oxidation) with a higher rate constant (1.7×107 M-1s-1) [129]. Therefore, the actual 
quantum yield of 1O2 generation may be higher than the estimated values. 

 

Figure 28: Fluorescence spectral change of Py-TMPyP under an interaction with DNA. 

 

Figure 29: Near-infrared emission of singlet oxygen generated by the photosensitized reaction of 
Py-TMPyP under an interaction with DNA. 
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Conclusion of the Controlled Generation of Singlet Oxygen by DNA-binding 
Porphyrin Photosensitizer 

In conclusion, the singlet excited states of Py-TMPyP and protonated An-TPyP 
are effectively quenched through intramolecular electron transfer from the pyrene 
or anthracene moieties (Figs. 23 and 30). The interaction with DNA suppresses 
the intramolecular electron transfer, resulting in an increase in the fluorescence 
intensity. This suppression of the electron transfer quenching enhances the 
intersystem crossing and makes the photo-energy transfer to molecular oxygen 
possible. The activity control of porphyrin photosensitizers for PDT through 
interaction with DNA should provide a possible increase in the selectivity for 
targeting DNA. This study demonstrated the activity control of 1O2 generation of 
a water-soluble porphyrin, Py-TMPyP, by DNA at a normal physiological pH. 
Computational chemistry was important tool to design the porphyrin 
photosensitizers. 

 

Figure 30: Proposed mechanism of the activity control of Py-TMPyP under an interaction with 
DNA. 
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CONCLUDING REMARKS 

A relatively simple calculation of HOMO of the photosensitizer was used to 
evaluate the DNA-damaging activity. Computational chemistry may be applied to 
predict the risk of the phototoxicity and photo-carcinogenicity of various 
compounds. On the other hand, the investigation of the photochemical reaction 
can be supported by the calculation of the molecular structure and energy. 
Therefore, the cost of experiments would be reduced by the use of computational 
study. Furthermore, computational chemistry is an important tool for the 
molecular design of drugs. In this chapter, examples for the design of a 
photosensitizer for PDT were introduced. Computational chemistry can be used in 
the fields of photochemistry, photobiology, and photomedicine. 
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Abstract: Quantitative structure-activity relationship (QSAR) is a statistical modelling 
approach that can be used in drug discovery, environmental fate modeling, property and 
activity prediction of new, untested compounds. Validation has been identified as one of 
the important steps for checking the robustness and reliability of QSAR models. Various 
methodological aspects of validation of QSARs have been a subject of strong debate within 
the academic and regulatory communities. One of the principles (Principle 4) of the 
Organization for Economic Cooperation and Development (OECD) refers to the need to 
establish “appropriate measures of goodness-of-fit, robustness and predictivity” for any 
QSAR model. Validation strategies are recognized decisive steps to check the statistical 
acceptability and applicability of the constructed models on a new set of data in order to 
judge the confidence of predictions. Validation is a holistic practice that comprises 
evaluation of issues such as quality of data, applicability of the model for prediction 
purpose and mechanistic interpretation in addition to statistical judgment. Validation 
strategies are largely dependent on various validation metrics. Viewing the importance of 
QSAR validation approaches and different validation parameters in the development of 
successful and acceptable QSAR models, we herein focus to have an overview of different 
traditional as well as relatively new validation metrics used to judge the quality of the 
regression as well as classification based QSAR models. 

Keywords: Applicability domain, OECD, QSAR, randomization, validation, 
virtual screening. 

INTRODUCTION 

Quantitative structure-activity relationships (QSARs) have a significant role in  
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drug design, property prediction and environmental fate modeling of chemicals 
and pharmaceuticals [1-3]. Predictive QSAR models are also used by different 
regulatory agencies to assess physical, chemical, and biological properties of 
chemicals using applications precise for decision-making frameworks in chemical 
safety assessment [4]. In a broad perspective, QSAR models may be divided into 
two major categories, regression-based QSAR models and classification-based 
QSAR models. Another key application of a statistically important QSAR model 
is the development of focused libraries based on the features of 3D-
pharmacophores and the attributes appearing in the QSAR models followed by 
subsequent virtual screening of libraries in search of compounds with enhanced 
potency [5]. New chemical entities with superior potency can also be obtained 
from application of the lead optimization technique using knowledge derived 
from QSAR models. 

The most important purpose of QSAR modeling is to predict the 
activity/property/toxicity of new chemical entity (NCE) falling within the domain 
of applicability of the developed models. To check reliability of the QSAR 
models for their predictions is an important aspect for the applicability of the 
models and therein arises the importance of the validation process [6]. Validation 
has been recognized as one of the backbone steps for QSAR model development. 
Validation of QSAR models plays a vital step in the identification of predictive 
and robust models which may be utilized for future screening of new and/or 
untested molecules. This crucial step was ignored for a long time and the 
techniques of identification of statistical robustness of the model were only 
practised. However, only recently, a huge number of researches have been 
conducted for to the design of NCE with the exploitation of QSAR techniques 
where validation of the models has been considered as the most noteworthy step 
[7] for reviewing the quality of the input data as well as applicability and 
mechanistic interpretability of the constructed models. Various methodological 
aspects of validation of QSARs have been the subject of strong debate within the 
academic and regulatory communities. The following questions are often asked 
before successful validation and subsequent application of a QSAR model: 1) 
which of the validation principles should be followed to judge the quality as well 
as predictive power of the QSAR model?, 2) what are the major criteria for 
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establishing scientific validity of a QSAR model?, 3) how to use QSAR models 
for regulatory purposes?; and 4) is it possible to use any QSAR model for any 
given set of new untested chemicals? 

The Organization for Economic Cooperation and Development (OECD) [8] has 
suggested five principles that should be followed to establish the scientific 
validity of a QSAR, thereby facilitating its acceptance for regulatory purposes. 
One of these principles (Principle 4) refers to the need to establish “appropriate 
measures of goodness-of-fit, robustness and predictivity” for any QSAR model. It 
identifies the need of the internal validation (as represented by goodness-of-fit and 
robustness) as well as the external validation of the QSAR model (predictivity). 
Validation strategies are recognized as the decisive steps to check the 
acceptability of the constructed models for their probable use on a new set of data, 
in order to judge the confidence of predictions. Basically, four strategies are 
adopted for validation of QSAR models [9]: i) internal or cross-validation; ii) 
division of the parent data set into training and test compounds; iii) application of 
the model on a (true) external data from a different source (true external 
validation); and iv) data randomization or Y-scrambling. The last method 
(randomization) can be regarded as a type of internal validation. 

Validation strategies are largely dependent on various validation metrics. The 
statistical quality of the regression based and classification based QSAR models can 
be examined by different statistical metrics developed over the years [10]. Like 
various validation metrics, another important validation criterion is to check the 
chance correlation of the QSAR model by Y-randomization test. The randomization 
test is executed in order to guarantee the robustness of the QSAR model. The 
necessity to identify an applicability domain [11] (OECD Principle 3) arises due to 
the fact that QSARs are inescapably connected with restrictions in terms of the 
variation of chemical structures, properties and mechanisms of action for which the 
models can generate trustworthy predictions. The developed model can predict a 
new compound reliably only if the new compound lies in the applicability domain of 
the model. It is extremely useful that the QSAR model user has information about 
the applicability domain of the developed model to identify interpolation (true 
prediction) or extrapolation (less reliable prediction). Steps for development of 
reliable and acceptable QSAR model are demonstrated in Fig. 1. 
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Figure 1: Steps for development of a reliable and acceptable QSAR model. 

Viewing the importance of QSAR validation approaches and different validation 
parameters in the development of successful and acceptable QSAR models, we 
herein focus in overviewing of different traditional as well as relatively new 
validation metrics used to judge the quality of the QSAR models. This book 
chapter will help QSAR learners to have a bird’s eye view on different available 
validation metrics useful for evaluating predictive quality of models. 

IMPORTANCE OF VALIDATION OF A QSAR MODEL 

With the advancement of cheminformatics, it is now possible to compute a large 
number of descriptors using various software tools [12]. Moreover, using various 
optimization procedures, it is now possible to obtain models that can fit well the 
experimental data but there may be a significant risk of overfitting. Fitting of data 
does not in any way confirm the prediction ability of a model. This is the main 
reason behind the requirement of validation of the developed models in terms of 
predictivity and robustness. A QSAR model is fundamentally judged in provisions 
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of its predictivity, representing how well it is capable to predict compounds which 
are not employed to develop the model. QSAR models that have been 
appropriately validated internally and externally can be considered trustworthy for 
both researchers and regulatory bodies [13, 14]. The meeting organized by QSAR 
experts formulated a set of guiding principles for the validation of QSAR models 
in Setúbal, Portugal in March 2002 [15]. The five guidelines adopted by the 
OECD [16] denoting validity of QSAR model are as follows: “(i) a defined 
endpoint, (ii) an unambiguous algorithm, (iii) a defined domain of applicability, 
(iv) appropriate measures of goodness-of–fit, robustness and predictivity and (v) 
a mechanistic interpretation, if possible”. The mentioned guidelines are now 
considered as OECD Principles for the validation of QSAR models. The OECD 
has also offered a checklist to provide direction on the interpretation of the 
principles [17]. Thus, the existing challenge in the development of a QSAR model 
is not only make statistically sound and robust model to predict the activity within 
the domain of applicability constructed by the training set, but in developing a 
model with the ability to accurately predict the activity of untested chemicals [18]. 

Validation Strategies 

The quality parameters quantify the fitness of a QSAR model as well as its 
robustness and predictive capabilities on a pure statistical basis. Apart from the 
use of the fitness parameters, validation of QSAR models consists of three 
strategies [9]: (i) internal validation utilizing the training set compounds, (ii) 
external validation employing the test set compounds, and (iii) true external 
validation by means of an external dataset from a different source. For evaluating 
the predictive ability of the developed models, both the internal and external 
validation methods have been considered by different groups of researchers. 
Randomization or Y-scrambling implemented on the data matrix provides a 
valuable technique for evaluating the existence of any chance correlation in the 
QSAR model. Along with these validation techniques, determination of the 
applicability domain of the model and selection of outliers are other vital aspects 
in the course of developing a reliable QSAR model with the spirit of OECD 
principles. As different metrics are used for regression based and classification 
based QSAR models, we have explained them in two different sections for the 
better understanding of the readers. The mathematical expressions of different 
validation metrics are summarized in Table 1. 
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Table 1: Mathematical definitions of various statistical validation metrics for the classification and regression based QSAR models 
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Table 1: contd… 
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Table 1: contd… 

 

 &  

The Yobs and Ypred values have been scaled at the beginning using the following formula: 
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Metrics defining statistical quality of the classification based QSAR models 
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Table 1: contd… 
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Table 1: contd… 

30 
 

 

1
sinh 2 1
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32 
 

33 
 

34 
 

35 
 

Metrics for PDD 
analysis 

36 
 

*Each notation is mentioned in the text. 

In Table 2, we have demonstrated how one can easily calculate different metrics from a regression based QSAR 
model. In Table 3, the methods of computation of different validation metrics for a classification based QSAR 
model are demonstrated.  
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Table 2: A simple example demonstrating calculation of different validation metrics from a regression based QSAR model* 

Model 
equation 
(MLR) 

Y =5.16-0.159×X1-1.44×X2 

Ntraining = 11, Ntest = 6 

Training set 

Compound 
ID Y (Observed) X1

* X2
*

Y (Calculated/LOO 
predicted) 

   

1 3.45 1.65 1 3.46/3.44 0.000 0.624 0.000 

3 3.14 1.63 1.5 2.74/3.59 0.159 0.230 0.201 

5 2.82 2.02 1.5 2.68/3.01 0.020 0.026 0.035 

7 2.64 2.05 1.5 2.67/2.60 0.001 0.000 0.001 

9 2.29 1.83 1.5 2.711.82 0.176 0.137 0.218 

10 2.2 1.9 2 1.98/2.56 0.049 0.212 0.132 

11 2.15 1.33 2 2.07/2.29 0.007 0.260 0.019 

13 1.74 1.54 2 2.04/1.35 0.087 0.846 0.153 

15 3.45 1.91 1 3.42/3.51 0.001 0.624 0.003 

16 2.51 1.66 1.5 2.74/2.27 0.051 0.023 0.060 

17 2.87 1.1 1.5 2.83/2.98 0.002 0.044 0.012 

 

= 

2.66    = 0.553 = 3.026 = 0.834 

Test set  

Compound 
ID Y (Observed) X1

* X2
* Y (Predicted) 

   

2 3.2 1.9 1 3.42 0.047 0.292 0.144 

4 2.87 1.22 1.5 2.81 0.004 0.044 0.003 

6 2.81 1.78 1.5 2.72 0.009 0.023 0.000 

8 2.49 1.61 1.5 2.74 0.065 0.029 0.109 

 

2
)()( )( traincalctrainobs YY  2

)( )( trainingtrainobs YY  2
)()( )( trainpredLOOtrainobs YY 

trainingY   2
)()( )( traincalctrainobs YY   2

)( )( trainingtrainobs YY   2
)()( )( trainpredLOOtrainobs YY

2
)()( )( testpredtestobs YY  2

)( )( trainingtestobs YY  2
)( )( testtestobs YY 
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Table 2: contd… 

12 2.01 1.96 2 1.97 0.002 0.423 0.656 

14 3.51 1.88 1 3.42 0.008 0.722 0.476 

 = 2.82    
= 

0.134 =1.532 = 1.388 

Calculation of metrics 
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* Y is the response variable; X1 and X2 are the descriptors involved in the QSAR model 
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Table 3: A simple example demonstrating calculation of different validation metrics from a classification based QSAR model* 

Compound ID 
Y 

(Observed) 

Classification 
threshold based on Y (Observed): 

(L≤3.69<H) 

Posterior 
Probabilities 

(PP) 

Predicted classification 
threshold based on PP: 

(L<0.50<H) 

Training set compounds 

1 4.17 H 0.94 H 

3 4.11 H 0.95 H 

4 3.58 L 0.97 H 

8 3.82 H 0.63 H 

9 3.63 L 0.11 L 

10 3.89 H 0.87 H 

11 3.82 H 0.81 H 

12 3.55 L 0.10 L 

13 3.98 H 0.83 H 

14 3.5 L 0.01 L 

15 3.78 H 0.87 H 

16 4.44 H 0.78 H 

17 3.36 L 0.01 L 

18 3.91 H 0.97 H 

20 3.69 L 0.88 H 

22 3.55 L 0.60 H 

23 3.64 L 0.01 L 

25 3.94 H 0.63 H 

26 3.94 H 0.94 H 

29 2.77 L 0.02 L 

30 2.41 L 0.00 L 

31 3.38 L 0.10 L 

33 3.29 L 0.01 L 
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Table 3: contd… 

34 4.24 H 0.98 H 

35 4.1 H 0.99 H 

Test set compounds 

2 4.08 H 0.60 H 

5 3.51 L 0.06 L 

6 3.83 H 0.53 H 

7 3.59 L 0.94 H 

19 3.93 H 0.87 H 

21 3.63 L 0.98 H 

24 4.03 H 0.88 H 

27 3.36 L 0.00 L 

28 3.95 H 0.49 L 

32 3.23 L 0.00 L 

Classification metrics 

Training set 
 

Confusion matrix P N 

P 13 0 

N 3 9 
 

Test set 
 

Confusion matrix P N 

P 4 1 

N 2 3 

 
 

TP 13 4 

FN 0 1 

FP 3 2 

TN 9 3 

Sensitivity (%) 
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Sensitivity

TP FN




100100*
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80100*

14

4
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Table 3: contd… 

Specificity (%) 

 

  

Precision (%) 

 

  

Accuracy (%) 

 

  

F-measure (%)   

G-means   

Cohen’s κ 
 

 

 

 

 

 

 

 

MCC 
  

*Y is the response variable 
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VALIDATION METRICS FOR REGRESSION BASED QSAR 
MODELS 

MEASUREMENTS OF QUALITY OF QSAR MODELS 

A QSAR model is required to be checked for various quality measures before it 
can be applied for screening of new chemical entities. For assessing the quality of 
a QSAR model, various statistical parameters can be used. The acceptability of a 
regression based QSAR model relies upon different statistical parameters [10] 
such as (i) standard error of estimate (s), (ii) determination coefficient (R2) and 
(iii) explained variance (Ra

2). The error in the inference of individual activity 
values of the molecules under study utilizing the regression method can be 
quantified based on their residual data. The standard error of estimate (SEE or s) 
is calculated from the square root of sum of squares of the residuals divided by the 
degree of freedom. The standard error of the estimate is a measure of the precision 
of fitting. Lower values of SEE correspond to improved model fitting. 

2( )

1
obs calcY Y

s
n p




 
   (1) 

In Eq. 1, Yobs and Ycalc are the observed (experimental) and estimated scores 
respectively, while n is the number of compounds and p is the number of 
descriptors (it should not be confused with the probability ‘p’ value denoting the 
level of significance). 

The determination coefficient R2 [10] measures the variation of the observed or 
experimental data with the predicted ones. Errors either in the data or in the model 
will lead to a bad fit. The maximum possible value for R2 is 1, which defines a 
perfect correlation. R2 is calculated from the following equation: 

2
( ) ( )2

2
( )

( )
1

( )
obs train calc train

trainingobs train

Y Y
R

Y Y


 



  (2) 

Here, Y training is the mean observed activity of the training set compounds. 
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Another parameter used for testing the quality of developed regression equation is 
adjusted R2 (Ra

2) [10]. Ra
2 (Eq. 3) is calculated to overcome the drawbacks 

associated with the increasing value of R2 with an increase in number of variables. 
The explained variance of a model can be adjusted in the form of the modified R2 

as shown below. 

2
2 ( 1)

1a

n R p
R

n p

 


 
 (3) 

VIF 

The descriptors in a multiple linear regression (MLR) equation should show 
minimum intercorrelation. Variance inflation factor (VIF) [19] of predictor 
variables should be checked for MLR models in order to check the presence of 
multicollinearity along with the model performance. VIF can be calculated from 
the following equation: 

2

1

1 i

VIF
R


  (4) 

where, Ri
2 the unadjusted R2 when one regresses Xi against the remaining 

descriptive variables of the model. Multicollinearity is considered as very high 
when VIF value is greater than 5. 

F-Ratio 

The F ratio is used in order to quantify the statistical importance of the regression 
model. A higher value of F implies that a more significant correlation has been 
achieved. It is defined in the following Eq. 5 [10]: 

 

 
 

2

2

1

calc

obs calc

Y Y
p

F
Y Y

n p






 



  (5) 
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where, Yobs is the observed response, Ycalc is the calculated response, n defines the 
total number of compounds and predictor variables is denoted as p. 

FIT Kubinyi Function 

The correlation coefficient R is clearly not the ultimate criterion because it tends 
to choose as many variables as possible. The standard error s value also tries to 
include too many variables, and the F value occasionally selects less number of 
variables than that frequently accepted by a QSAR researcher as large F values 
are often achieved by including only one or two variables in the model. The FIT 
Kubinyi function is closely connected to the F value [20]. 

 
  

2

2 2

1

1

R n p
FIT

n p R

 


 
 (6) 

In Eq. (6), n defines the number of training set compounds and p denotes the 
number of generated variables in the model. 

Akaike’s Information Criteria (AIC) 

The goodness of fit and the number of variables that has to be estimated to attain 
that degree of fit are considered by Akaike’s information criteria (AIC). AIC is 
calculated using the following equation: 

 
 

'

2'

n p
AIC RSS

n p





 (7) 

where, RSS is the sum of squared differences between the observed and estimated 
response; n defines the number of training set compounds; and p΄ denotes the 
number of adjustable variables (the best possible combination of predictor 
variables for the model) in the model [21]. When comparing a number of models, 
the model that creates the least value of this statistic should be identified as the 
most useful one. However, it may be noted that AIC can be employed to evaluate 
classification based QSAR models also if the RSS parameter in eq. 7 is 
substituted by any error estimation metric, i.e. classification error. 
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Additional metrics need to be employed to judge the predictive ability of the 
QSAR models as acceptable values of these statistical parameters only are not 
always adequate. To optimally determine the predictability of the models, they are 
required to be further assessed utilizing diverse validation metrics. Thus, internal 
and external validation experiments are performed in order to check the 
predictability the models. 

INTERNAL VALIDATION 

Internal validation of a QSAR model is done employing the molecules present in 
the training set [22-23]. It involves activity prediction of the training set 
molecules followed by a check of the precision of predictions. The cross-
validation approach involves the leave-group-out cross-validation (LGO-CV) 
method where a set of n number of observations is divided into calibration and 
validation subsets. The calibration subset is used to develop the model, while the 
validation set is used to test the predictability of the model for the new data which 
are not used in the calibration. The method comprises two commonly used 
techniques namely, leave-one-out and leave-many-out cross-validation 
techniques. 

Leave-One-Out (LOO) Cross-Validation 

The training data set is initially modified by eliminating one compound from the 
set for LOO cross-validation. The QSAR model is then constructed based on the 
remaining molecules of the training set and the activity of the omitted compound 
is computed based on the resulting QSAR equation. This process is repeated until 
all the molecules of the training set have been deleted once, and the predicted 
activity data are obtained for all the training set compounds. The model 
predictivity is evaluated using the predicted residual sum of squares (PRESS) and 
cross-validated R2 (Q2) [24, 25] for the model. PRESS is a sum of squared 
differences between experimental and predicted data while the value of standard 
deviation of error of prediction (SDEP) [8, 26, 27] is calculated from PRESS. 
Eqns. 8, 9 and 10 give the expressions for PRESS, SDEP and Q2 respectively. 

2( )obs predPRESS Y Y   (8) 
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PRESS
SDEP

n
  (9) 

2
( ) ( )2

2 2
( ) ( )

( )
1 1

( ) ( )
obs train pred train

training trainingobs train obs train

Y Y PRESS
Q

Y Y Y Y


   

 

 

 (10) 

In Eq. 8, Yobs and Ypred correspond to the observed and LOO predicted activity 
values while in Eq. 9, n refers to the number of observations. In Eq. 10, Yobs(train) is 
the observed activity, Ypred(train) is the predicted activity of the training set 
molecules based on the LOO technique. The accepted threshold value of Q2 is 0.5. 

It is interesting to point out that only a higher value of Q2 is an inadequate 
criterion to assess the predictive potential of a QSAR model. Structural 
redundancy of the training set may be a cause for overestimation of the value of 
Q2 [28]. The models developed may suffer from the problem of overfitting. Thus, 
despite bearing a significant correlation between the descriptors and response 
parameter, the developed model may fail to predict correctly the activity of new 
compounds. So, LOO-Q2 can serve only as a crude criterion to judge the quality 
and robustness of a model while external validation plays a key role in detecting 
the ability of the model to predict the new set of molecules. 

Leave-Many-Out (LMO) Cross-Validation 

The basic principle of the leave-many-out technique (LMO) method is that a 
specific section (1 ≤ M < N where N is a sample size) of the training compounds 
is held out and omitted in each cycle [29]. For each cycle, the model is 
constructed employing the reduced dataset and the deleted compounds are 
predicted utilizing the developed model. After completion of all cycles, the 
predicted activity values of the compounds are considered for the calculation of 
the LMO-Q2. Based on the predicted values of the deleted compounds in each of 
the cycles, predictive R2 may be calculated for each cycle. Thus, within the 
process of internal validation, the LMO technique gives to some extent a flavour 
of external validation. The major steps for LOO and LMO cross-validation are 
presented in Fig. 2. 
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Figure 2: Major steps for the calculation of LOO and LMO cross-validation metrics. 

Hou Fitness Function 

Hou fitness function [30, 31] is defined as the metric (Eq. 11) which unites a 
multiple correlation coefficient R and the leave-one-out Q (QLOO). 

p LOOR RQ  (11) 

The acceptability of a model is tested with the leave-one-out cross-validated 
correlation coefficient (Q2), which can be defined as: 

Q2 = (SSY-PRESS)/SSY (12) 

where, SSY is the sum of the squared deviations of the dependent variable values 
from their mean, PRESS is the predicted sum of squares obtained from the leave-
one-out cross-validation method. 

True Q2 

The process of selection of the training and test sets may be prejudiced in many 
cases though external validation is largely accepted by various research groups. 
Moreover, the division of a dataset may result in loss of information (for the test 
set) which otherwise could have been used for developing the QSAR model. 
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Thus, according to Hawkins et al. [32], holding out a part of the dataset is useless 
in case of a small dataset. Again in case of cross-validation, the model is 
constructed using the training set where the separation is done internally. It is 
critical that each compound should be removed for prediction so that it is not used 
in any way in the model fitting applied to the remaining retained n-1 compounds. 
The activity of the deleted compound is then predicted using the developed 
equation employing retained n-1 compounds. Thus, Hawkins et al. proposed the 
concept of “true Q2” parameter, which can be computed employing the variable 
selection strategy at each validation cycle. In case of small data sets, compared to 
the traditional approach of the splitting of the data set into training and test sets, 
this may be a better metric for assessment of predictability [32, 33]. 

Hawkins et al. [32] arrived at the conclusion that (1) if one has 100 compounds 
available in a particular dataset, then he can use all compounds for calibration 
with accurate and precise Q2; (2) if the dataset consists of 120 compounds, 
splitting the set into 100 for training set and 20 for test set is not a worthy one as 
the information in the test compounds is far substandard to what one gets from the 
training set’s Q2; (3) if one has 150 compounds, one can use 100 for training set 
and the remaining ones for test set; the test set will give an approximation of R2 
moderately equivalent with the Q2. 

rm
2 Metric for Internal Validation 

The mean response value of the training set molecules and the distance of the 
mean from the response values of the each compound plays a critical role in 
computing the Q2 value. The Q2 value increases with an increase of the value of 
the denominator ( 2

( )( )obs train trainingY Y ) in the right hand side of the equation 
10. Thus, even for great disparity in the predicted and observed response values, 
satisfactory Q2 values may be obtained if the molecules exhibit a considerably 
broad range of response data. Hence, an acceptable Q2 does not guarantee that the 
predicted activity values lie in close proximity to the observed ones although there 
may exist a good overall correlation between the values. Thus, to prevent this 
error and to better point out the model predictability, the rm

2 metrics (Eqs. 13 and 
14) for internal validation, introduced by Roy and co-workers [34-36], may be 
calculated. 
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2 / 2
2 ( )

2
m m

m

r r
r


  (13) 

2 2 / 2| |m m mr r r    (14) 

Here, ))(1( 2
0

222 rrrrm   and ))(1( 2
0

/222/ rrrr m  . The parameters 
r2 and r0

2 are the squared correlation coefficients between the observed and 
(leave-one-out) predicted values of the compounds with and without intercept 
respectively. In the initial studies, observed values were considered in y-axis 
whereas predicted values were considered in the x-axis. r′0

2 bears the same 
meaning but uses the reversed axes. It is interesting to note that during the change 
of axes, the value of r2 remain same while it is not true for the case of r0

2. When 
the observed values (y-axis) are plotted against the calculated values of the 
compounds (x-axis) setting intercept to zero, the slope of the fitted line gives the 
value of k. Interchange of the axes gives the value of k/. The following equations 
are employed for the calculation of r2, r0

2, k and k/. 

 (15)
 

 (16)
 

 (17)
 

 (18)
 

2
mr is the average value of rm

2 and r′m
2, and Δrm

2 is the absolute difference between 

rm
2 and r′m

2. In general, the difference between rm
2 and r/

m
2 values of the training 

set should be null for better models. )(
2

LOOmr  and Δrm
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(LOO) parameters can be 

used for the internal validation of the training set and it has been shown that the 
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value of Δrm
2

(LOO) should be less than 0.2 provided that the value of )(
2

LOOmr  is 

more than 0.5. In Fig. 3 we have tried to demonstrate the major steps for the 
calculation of rm

2 metrics. 

 

Figure 3: Major steps for the calculation of rm
2 metrics. 

True rm
2

(LOO) 

True rm
2

(LOO) is calculated from the model developed utilizing the undivided data 
set employing the variable selection stratagy at each cycle of validation. External 
validation characteristics are truly reflected by the ‘true rm

2
(LOO)’ for the QSAR 

model as reported by Mitra et al. [37]. In case of small datasets, the predictability 
and accuracy of predictions can be efficiently judged employing this metric. 

EXTERNAL VALIDATION 

Although internal validation is the most accepted approach for validation of a 
QSAR model, but it is not the ultimate approach to judge the predictive power of 
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a QSAR model for NCE [13]. The true predictive ability of the model is judged 

based on the values of predictive R2 (R2
pred) and rm

2 metrics 2
( )m testr and 

2
( )m overallr from test set predictions. 

Predictive R2 (R2
pred) 

The first step of external validation is splitting of the entire dataset into training 

and test sets. The choice and number of compounds in the training and test sets 

are the principal conditions for development of a statistically noteworthy QSAR 

model [33]. The QSAR models are constructed based on the training set 

compounds, and the activity of the test set molecules is predicted utilizing the 

developed model. Thus, the metric R2
pred [13] (Eq. 19) replicates the measure of 

correlation between the observed and predicted data. 

2
( ) ( )2

2
( )

( )
1

( )
obs test pred test

pred
trainingobs test

Y Y
R

Y Y


 





 (19) 

Here, Yobs(test) and Ypred(test) signify the observed and predicted response data for the 
test set molecules, while trainingY  denotes the mean observed activity of the 
training set compounds. The stipulated threshold value of R2

pred is 0.5 for 
acceptability of any QSAR model. 

Validation Based on Golbraikh and Tropsha’s Criteria 

In case of least squares, the experimental versus fitted and the fitted versus 

experimental plots are not always equivalent [38]. According to Golbraikh and 

Tropsha [13], regressions of y against y/ or y/ against y through the origin, should 

be characterized by either k or k/ (slopes of the corresponding regression lines) 

being close to 1. Consequently, the regression lines through origin are defined by 
/0 kyyr  and yky

r // 0   while the slopes k and k/ are given by Eqs. (20) and (21) 

respectively. 
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Golbraikh and Tropsha proposed more strict conditions for a QSAR model in 
order to ensure high predictability. They suggested that either of the squared 
correlation coefficients of these two regression lines (y against y/ or y/ against y 
through the origin) r0

2 or r/
0
2 (given by Eqs. 22 and 23) respectively should be 

close to the value of r2 for the developed model. The values of r2 and r0
2 specify 

the squared correlation coefficients between the observed and the predicted values 
with and without intercept respectively while r/

0
2 represents the same information 

as r0
2 does but with inverted axes. 
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In Eqs. (22) and (23), /y  and y  signify the mean values of the predicted and 
observed data, respectively. Therefore, according to Golbraikh and Tropsha [13], 
acceptable QSAR models should maintain the following conditions: 

iv) . 

rm
2

(test) for External Validation 

As shown by the expression of R2
pred, similar to Q2, the value of R2

pred relies on 
the average activity value of the training set molecules. Thus, high values of R2

pred 
may be obtained when the test set molecules bear a wide range of activity data; 

2 2
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but this may not signify that the predicted values are very near to the 
corresponding observed data. In order to find out the propinquity between the 
observed and predicted activity data for the test set compounds, the metric rm

2
(test) 

[35], parallel to rm
2

(LOO) employed in internal validation, has been introduced. The 
rm

2
(test) is calculated utilizing the squared correlation coefficients between the 

predicted and observed values of the test set molecules. As suggested by Roy et 

al., the value of  should be more than 0.5 provided that the value of 

Δrm
2

(test) is lower than 0.2 [35]. 

It is interesting to point out that, the rm
2 metrics are not limited to the training and 

test set only. Roy and coworkers [35] showed that it can be extended to the entire 
dataset employing the LOO predicted data for the training set and predicted data 

for the test set molecules. The metrics have been defined as  and 

Δrm
2

(overall) which reflect the predictability of the model for the entire dataset. The 
major advantages of this parameter include among other things: (i) unlike external 
validation, the rm

2
(overall) metric includes both training and test set molecules and 

thus the statistic is based on prediction of comparably large number of compounds 
which imparts greater reliability to the model; (ii) when many equivalent models 
are obtained, where few models explain superior reliability in terms of the internal 
validation metrics while others may demonstrate better external validation 

statistics, choice of the best model becomes complicated. Since  and 

Δrm
2

(overall) are based on the entire dataset, the values of these parameters enable 
selection of the best model based on an overall contribution of both internal and 
external validation measures. The rm

2 statistics have been discussed by Roy and 
coworkers [34-37, 39-50] in many reports. The parameter rm

2 has also been used 
by various other groups of authors [51-59] to verify the robustness and 
predictability of QSAR models. 

ADDITIONAL FUNCTIONS FOR MODEL PREDICTIVE ABILITY RMSEP 

External predictability of a QSAR model may further be calculated by an 
assessment of the observed activity and the predictions of the test set molecules 
through calculation of a metric referred to as root mean square error in prediction 
(rmsep) [60] given by Eq. 24. 

2
( ) ( )( )obs test pred test

ext

y y
RMSEP

n


   (24) 
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Here, next signifies the number of test set compounds. The parameter depends 
exclusively on the divergence between the predicted and observed activity values 
and can also be calculated when there is only single test compound is present. 

Q2
(F2) 

Schüürmann et al. [61] proposed an additional metric for computation of external 
Q2, i.e., Q2 based on prediction of test set compounds (Q2

(F2)) as given by Eq. 25. 

2
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( 2) 2
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 (25) 

Here,  signifies the mean observed activity of the test set compounds. In case 
of Q2

(F2), the mean activity value used in the denominator represents external set 
compounds. Almost equal or close values of Q2

(F2) and Q2
(F1) infer that the 

training set mean lies in the close propinquity to that of the test set which 
indicates that the test set utilized for modeling covers the whole response domain 
of the model. The threshold value 0.5 is defined for this parameter. 

Q2
 (F3) 

Another parameter (Q2
 (F3) with a threshold value of 0.5) for validation of a QSAR 

model has been proposed by Consonni et al. [60]. This metric can be computed by 
the following equation: 
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 (26) 

In Eq. 26, ntr and next denote the number of training set and test set compounds, 
respectively. However, although Q2

(F3) measures the model predictability, it is 
sensitive to selection of training data set and tends to penalize models fitted to a 
very homogeneous dataset even if predictions are close to the truth [60-62]. 

Concordance Correlation Coefficient (CCC) 

The CCC parameter [63] can also be calculated in order to check the model 
reliability by the following equation: 

testY
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Here, xobs(test) and ypred(test) refer to the observed and predicted values of the test set, 
n denotes the number of compounds, and )(testobsx  and )(testpredy  signify the mean 
of observed and predicted values, respectively. The CCC coefficient measures 
both precision and accuracy detecting the distance of the observations from the 
fitting line and the degree of deviation of the regression line from that passing 
through the origin respectively. Any deviation of the regression line from the 
concordance line (line passing through the origin) give a value of CCC smaller 
than 1. 

rm
2

(rank) Metric 

The rm
2

(rank) parameter was introduced to measure the proximity between the order 
of the observed data and that of the corresponding predicted data [64]. The rm

2
(rank) 

metric was introduced by Roy and co-workers with the intention of incorporating 
the rank-order predictions of molecules. The rm

2
(rank) metric is computed utilizing 

the correlation of the ranks generated from the observed and the corresponding 
predicted data. First, the observed and predicted data of the molecules are ranked 
and the (Pearson’s) correlation coefficients of the corresponding ranks are 
determined with (r2

(rank)) and without intercept (r0
2

(rank)). The r2
(rank) and r0

2
(rank) 

calculated employing the rank-order are used to compute the rm
2

(rank) metric. The 
values of r2

(rank) and r0
2
(rank) vary from each other considering the variation in 

ranking of the two variables. In an ideal ranking, where the observed and 
predicted response data perfectly match with each other for all molecules, the 
obtained rm

2
(rank) metric value is 1. The minimum acceptable threshold value for 

the rm
2

(rank) metric is 0.5. 

ASSESSMENT OF CHANCE CORRELATION: Y-RANDOMIZATION 

Y-randomization test is a practice to make sure the robustness of the QSAR 
model. In Y-randomization, validation is carried out by permuting the response 
values (Y) with respect to the descriptor matrix which has been kept unaltered. 
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There are two types of randomization tests namely process and model 
randomization that can be performed at varying confidence levels. In case of 
process randomization, the response variables are arbitrarily jumbled, and variable 
selection is done newly from the entire descriptor matrix. In contrast, for model 
randomization, the dependent variables are scrambled and new models are 
constructed employing the same set of variables as present in the nonrandom 
model. 

cRp
2 

The degree of variation in the values of the squared mean correlation coefficient 
of the randomized model (Rr

2) and squared correlation coefficient of the 
nonrandom model (R2) is reflected in the value of cRp

2 [65] parameter. This metric 
penalizes the model R2 for a small difference between the values of the squared 
correlation coefficients of the non-random (R2) and the randomized (Rr

2) models 
as per the following equation (Eq. 28): 

2 2 2c
p rR R R R    (28) 

The threshold value of cRp
2 is 0.5 and a QSAR model having the corresponding 

value above the stated limit might be correctly considered that the model is not 
obtained by chance only. 

Another approach for the assessment of chance correlation deals with set of 
decision inequalities utilizing the values of Q2

yrand and R2
yrand and their 

relationship as that R2
yrand > Q2

yrand. The approach has been suggested by Eriksson 
and Wold [9]. They have set the following rules to measure any kind of chance 
correlation in the QSAR model. 

“(i) Q2
yrand < 0.2 and R2

yrand < 0.2  no chance correlation 

(ii) any Q2
yrand and 0.2 < R2

yrand < 0.3  negligible chance correlation 

(iii) any Q2
yrand and 0.3 < R2

yrand < 0.4  tolerable chance correlation 

(iv) any Q2
yrand and R2

yrand > 0.4  recognised chance correlation” 
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Thus, the number of randomization resulting in false positive correlations is 
counted up as the correlation frequency from the Q2

yrand vs R2
yrand plot. 

VALIDATION METRICS FOR CLASSIFICATION BASED QSAR MODELS 

In order to assess the performance of classification based models, validation is 
one of the utmost criterion in terms of qualitative predictions [66]. Validation for 
a classification based model is often performed for two-class problems, where the 
compounds are classified into actives or inactives. 

Goodness-of-fit and Quality Measures 

Wilks Lambda (λ) Statistics 

The Wilks Lambda is a widely used parameter for the testing of significance of 
discriminant model function. It is a distance based parameter and is calculated 
from the scalar transformations of the covariance matrices of between and within-
groups variances. In a classification analysis, where at least two groups are 
present, Wilks lambda is determined as the ratio of within group sum of squares 
and total sum of squares, i.e. within-category to total dispersion [67]. 

Within group sum of  square
Wilks λ

Total sum of  square
  (29) 

Let us consider Bg and Wg are the random pp   independent variable matrix with 
the distribution Wp (q, Σ) and Wp (n, Σ), respectively considering n>p. Then the 
Wilks λ will be given by the following equation [33]: 

det g

g g

B
λ

B W

 
    

 (30) 

Where ‘det’ refers to the determinant of the matrix constructed using descriptors. 
Wilks lambda focuses on the best discriminating property of the analyzed 
independent variables and it spans from 0 to 1, where 0 corresponds to different 
values of group means signifying good level of discrimination achieved by 
variable and 1 referring to similar group mean values meaning no discrimination 
achieved by the variables. Hence, the value of Wilks lambda for a good 
discriminant model should preferably be lower. 
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Canonical Index (Rc) 

The measure of the strength of the relationship between the two variates is 
expressed as a canonical correlation coefficient [68]. 

 (31) 

Here, λi is refereed as eigen value of the matrix. 

Chi-Square (χ2) 

The chi-square (χ2) statistic identifies the liberty between two groups signifying 
that a higher value of this metric will point out superior separability between 
groups, i.e. good classification analysis [69]. 
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  (32) 

where, fi is observed response, Fi is predicted response and t is the number of 
observations. 

Squared Mahalanobis Distance 

Square of Mahalanobis distance is measured during linear discriminant analysis for 
the determination of likelihood of a compound to be classified in a specific group in 
the discriminant space. In a referred discrimination space or transformed space, 
euclidean distances among data points become equal to Mahalanobis distances. In a 
multivariate normal distribution with covariance matrix Σ, the Mahalanobis distance 
between any two data points xi and xj can be defined as [67]: 

 (33) 

In eqn. 33, xi and xj are two random data points, T is transpose of a matrix and Σ−1 
is inverse of the covariance matrix. 
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Model Performance Parameters 

The compounds can be classified using the developed classification based QSAR 
models into four groups based on a assessment between the observed and 
classified activity values: (i) true positives (TP): the active (positive) compounds 
which have been correctly classified as actives, (ii) false positives (FP): the active 
compounds which have been incorrectly classified as inactives, (iii) false 
negatives (FN): the inactive (negative) compounds erroneously classified as 
positives, i.e. actives, and (iv) true negatives (TN): inactive compounds which 
have been correctly predicted as inactive [70]. Employing this classification, a 
two-by-two confusion matrix [71] can be prepared individually for the training 
and test sets. To assess the classifier model performance and classification 
competence, various statistical tests are employed. 

FNTP
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callySensitivit
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G-Means 

A simple way to assess the model’s capability to correctly classify active and 
inactive compounds using the combination of sensitivity and specificity into a 
single value employing the geometric mean (G-means) [72]: 

 (39) -G means Sensitivity Specificity 
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Cohen’s κ 

Cohen’s kappa (κ) can be used to determine the conformity between classification 
models and known classifications [73]. It can be calculated using the following 
formulae: 

 (40) 

( )
( )

( )r

TP TN
P a

TP FP FN TN




  
 (41) 

 (42) 

where, Pr(a) is the relative agreement between the predicted classification of the 
model and the known classification, and Pr(e) is the hypothetical probability of 
chance agreement. The values of Pr(a) and Pr(e) can be calculated from the generated 
confusion matrix. Cohen’s kappa returns values between −1 (no agreement) and 1 
(complete agreement). Cohen’s kappa values between −1.0 and 0.4 point out that the 
model is a poor predictor, values between 0.4 and 0.6 designate that the model is 
average, values between 0.6 and 0.8 imply that the model is satisfactory, and values 
between 0.8 and 1.0 signify that the model is highly predictive. 

Receiver Operating Characteristics (ROC) Curve 

A ROC curve presents a visual representation of the success and error observed in 
a classification model. The curve is plotted taking true positive rate (tp) on the Y 
axis and false positive rate (fp) rate on the X axis, and the nature of the curve 
provides easier detection of the correctness of prediction. Apart from 
classification problems, ROC curves have been a useful measure in signal 
detection theory since the past intended for determining the tradeoff between hit 
rates and false alarm rates of classifiers [71]. 
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 (  )  
 1

 

Negatives inactive compounds incorrectly classified
fp rate specificity

Total negatives
    (44) 

Thus, the ROC curve may also be drawn by plotting the fp rate and the tp rate 
along the X and Y axes respectively. It signifies the number of correctly and 
wrongly identified objects by the developed classifier. A sample picture for ROC 
curve is presented in Fig. 4. Most classifiers can be varied from “conservative” to 
“liberal” classifiers. A perfect classifier correctly classifies all positive cases and 
has no false positives. A conservative classifier (lower left region of the ROC 
space) requires strong evidence to classify a point as positive while a liberal 
classifier (upper right region of the ROC space) does not require much evidence 
to classify an event as positive. 

 

Figure 4: The ROC space (left) and a sample ROC curve (right). 

ROCED and ROCFIT 

Two new metrics employing distances in a ROC curve for the identification of the 
acceptable classification models are ROC graph Euclidean distance (ROCED) and 
ROC graph Euclidean distance corrected with Fitness Function (FIT(λ)) or Wilks 
λ (ROCFIT) [74]. It is interesting to point out that these two metrics make a 
proper balance in both training and test sets. 
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If the best model is one whose depiction is positioned as close as possible to the 
upper left corner in the ROC graph, a good indicator would be a measure of this 
distance. The Euclidean distance between the perfect and a real classifier (di) 
expressed by the following equation: 

 (45) 

where Sep and Ser are the respective sensitivity values of the perfect and the real 
classifier, while Spp and Spr represent the specificity values of the perfect and real 
classifier, respectively. As both the sensitivity and specificity for a perfect classifier 
have a value of 1, the euclidean distance can be calculated as following equation: 

 (46) 

where i = 1 stands for the training set, and i = 2 for the test set. As these two 
distances corresponding to the training and test sets should be as small as 
possible, the parameter can be defined as follows: 

 (47) 

where, d1 and d2 are depiction of the distances in a ROC graph for the training and 
test sets respectively. 

ROCED can take values between 0 (which signifies an ideal classification for 
both training and test sets) and 4.5 (d1 = 0.5 random classifier and d2 = 1). Models 
with values greater than 2.5 indicate that these models have random responses. 

A new parameter ROCFIT (ROC graph Euclidean Distance corrected with Wilks 

λ) has also been introduced to avoid the probable loss of significance in the 

variables of the models generated by linear discriminant analysis (LDA) using 

only Eqn. 47,. ROCFIT is defined as follows: 
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ROCED
ROCFIT
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AUC-ROC 

AU-ROC is equal to a straightforward average of the ranks of the actives, the 
good performance of "early recognitions" is offset rapidly by "late recognitions" 
[75, 76]. AUROC is approximately normal distributed, with mean 

1 1
2 2( )N n    and variance 2 1

12 ( )
N

n N n   . Here, the number of 

actives and the total number of compounds are denoted by n and N respectively. 
AU-ROC defined in equation (47) is linearly related to the rank sum of actives, 
which is also called Mann-Whitney U test. ri is the rank of the ith active. 

 (49) 

RIE and BEDROC 

Truchon and Bayly [75] have shown that the exponential weighting schemes, 
BEDROC and robust initial enhancement (RIE) provide good "early recognition" 
of actives. By changing the tuning parameter, α, users can control the earliness of 
"early recognition" to test whether a ranking method is useful in the context of 
VS. BEDROC is bounded by interval [0, 1] and can be interpreted as the 
probability that an active is ranked before a randomly selected compound 

exponentially distributed with parameter α, only when 
N

n
α << 1. RIE, developed 

by Sheridan et al. [77], used an exponential weighting scheme, that places heavier 
weight to "early recognized" actives. 
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In Eq. (50), xi = ri/N is the relative rank of the ith active and α is a tuning 
parameter. BEDROC is derived from RIE and it is bounded by [0, 1]. BEDROC 
has a linear relationship with RIE, 
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Although RIE and BEDROC produce dissimilar values, their distributions are 

alike up to a scale and a translation factor, and their correlation is 1. 

AUC-pROC 

Logarithmic transformation shifts the emphasis from "late recognition" to "early 

recognitions". Clark and Clark [78] proposed a new metric, pROC, on basis of the 

negative logarithmic transformation of false positive rates, θ. When the false 

positive rate is zero, they suggested a zero-point continuity modification should 

be made by replacing zero with 1/N. 
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RIE, BEDROC and AUC-pROC metrics are used for evaluating the performance 

of classification models as well as for the virtual screening performance of the 

models. It is interesting to point out that to employ these metrics to evaluate the 

performance of a model in typical external sets (about the same number of actives 

and inactives) will lead to results suffering the “saturation effect”. 

Matthews Correlation Coefficient (MCC) 

The quality of a binary (two-class) classification is measured by another 

parameter MCC [79]. MCC consider true and false positives as well as negatives 

and generally regarded as a balanced measure which can be utilized even if the 

classes are of very different sizes. The MCC is a correlation coefficient between 

the observed and predicted binary classifications which returns a value between 

−1 and +1. A perfect prediction is presented by an MCC coefficient of +1, 

average random prediction by 0 and −1 is considered as inverse prediction. 
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The MCC can be calculated considering the confusion matrix using the following 
formula: 

( )( )( )( )

TP TN FP FN
MCC

TP FP TP FN TN FP TN FN

  


   
 (53) 

The meaning of TP, TN, FP and FN are same as discussed earlier. The 
denominator value will be considered one if any of the sums in the denominator is 
zero. This parameter in particular addresses the issue of inappropriate explanation 
of a confusion matrix, and the cases where the dataset sizes are higher. 

Pharmacological Distribution Diagram (PDD) 

Pharmacological distribution diagram (PDD) is a frequency distribution plot of a 

dependent variable where expectancy values of the variable is plotted in the  

Y-axis against numeric intervals of the variable in the X-axis. In a classification 

issue, expectancy refers to the probability of categorization of a compound in a 

specific group for a specific value of the discriminant function. During LDA, a 

discriminant function (DF) is developed, which is a mathematical equation, used 

for the calculation of discriminant scores of every individual compounds 

(machine learning classification algorithms also provide scores that can be 

employed in the same way the LDA scores are). Then the discriminant function 

values of all samples are taken in the abscissa in the form of range, and the 

expectancy values (probability of activity) are plotted in the ordinate against those 

ranges. Hence, this graph visually signifies the overlapping regions of the 

categories e.g., positives and negatives, as well as it shows the regions of DF 

values that possess maximal probability of finding actives and inactives [80]. For 

a classification case comprising of two classes like actives and inactives (or 

positives and negatives), two terms named ‘active expectancy’ and ‘inactive 

expectancy’ may be defined as below where the denominator is added with a 

numerical value of 100 to avoid division by zero [80]: 

 
Activity expectancy

100a

Percentage of  actives
E

Percentage of  inactives
 


 (54) 
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where ‘a’ and ‘i’ are the number of occurrences of active and inactive compounds 
at a specific range. It can be evidently understood that for a perfect classification 
scheme, the active (positive) and inactive (negative) compounds will always be 
characterized by different ranges of DF values, and hence in an ideal discriminant 
operation, the actives will always be separated than the inactives whereas 
overlapping of them will correspond to error in prediction referring to false 
positives as well as false negatives. A sample picture for PDDs showing good and 
bad classifications is represented in Fig. 5. 

 

Figure 5: Sample PDDs showing good and bad classifications. 

APPLICABILITY DOMAIN (AD) 

The applicability domain (AD) [81-86] is a theoretical area in chemical space, 
defined by the model descriptors and modeled response. The AD of a model plays 
a crucial role for computing the uncertainty in the prediction for a test molecule 
based on similarity to the molecules utilized to construct the QSAR model. The 
prediction of a modelled response using QSAR is valid only when the compound 
being predicted falls within the AD of the model as it is unfeasible to predict all 
chemicals using a single model. AD is the physico-chemical, structural or 
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biological space based on which the training set of the model is constructed, and 
the model cane be used for predictions of NCEs within the specific domain [87]. 
To make confident predictions, a QSAR model should always be employed for 
those molecules which are within its applicability domain. 

A conceptual guidance was offered by the Setubal Workshop [42] on defining AD 
of QSAR models, but it is complicated for use directly. Ideally the models should 
only be used to make predictions within its domain by interpolation [88]. There 
are four major approaches for estimating interpolation regions in a multivariate 
space as discussed thoroughly in Table 4 [86, 89-96]. 

Table 4: Methods for estimating AD 

AD 
approaches 

Methods Hypothesis Criteria 

Range based  Bounding box 
(Descriptor 

ranges) 

The range of each descriptor is 
considered defining an n-dimensional 
hyper-rectangle with sides parallel to the 
coordinate axes. 

 
Any test set compounds, 
which are not present in any of 
these particular ranges, are 
considered out of the AD PCA bounding 

box 
(Principal 

components 
ranges) 

Principal components (PC) construct a 
new orthogonal coordinate system and 
allow to correct the correlations between 
descriptors. The minimum value and the 
maximum value of each PC define an n-
dimensional hyper-rectangle with sides 
parallel to the PC. The AD is defined 
with the created hyper-rectangle. 

TOPKAT 
Optimal 

Prediction 
Space 

The Optimum Prediction Space (OPS) 
from TOPKAT uses a variation of PCA 
and therefore creates a novel orthogonal 
coordinate system. In this system, the 
OPS boundary is denoted by the 
minimum and maximum values of the 
data points on each axis of the OPS 
coordinate system.  

The Property Sensitive object 
Similarity (PSS) between the 
training set and a queried point 
assesses the confidence of the 
prediction. 

Geometric 
methods 

Convex Hull 
 

The coverage of an n-dimensional set 
using the convex hull calculation is 
estimated. 

Interpolation space is defined 
by the smallest convex area 
containing the entire training 
set. 

Distance-
based 

methods 
 

Mahalanobis 
distance 

It considers the distance of an 
observation from the mean values of the 
independent variables but not the impact 
on the predicted value. Mahalanobis 
distance is unique as it involuntarily 
takes into account the correlation 
between descriptor axes. 

Observations with values 
much higher than those of the 
remaining ones are considered 
to be outside of the AD. 
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Table 4: contd…. 

 Euclidean 
distance 

The distance scores are calculated by the 
Euclidean distance norm. A distance 
score, dij, for two different compounds Xi 

and Xj can be measured by the Euclidean 
distance norm. The Euclidean distance 
can be expressed by the following 
equation: 





m

k
jkikij xxd

1

2)(
 

The mean distances of one sample to the 
residual ones were calculated as follows: 

1
1





n

d
d

n

j
ij

i
, 

where, i=1,2,….,n. 
The mean distances are then normalized 
within the interval of zero to one. 

 
Compounds with distance 
values adequately higher than 
the most active probes are 
identified to be outside the 
AD. 

City block 
distance 

City-block distance is the summed 
difference across dimensions and is 
computed as: 

 

It examines the absolute differences 
between coordinates of a pair of objects 
(xi and yi). A triangular distribution is 
assumed by city-block distance and is 
predominantly helpful for the distinct 
type of variabls.  

Leverage 
approach 

The leverage (h) of a compound in the 
original variable space is computed 
utilizing the HAT matrix as: 
H = X(XTX)–1XT), 
where H is an (n x n) matrix that 
orthogonally projects vectors into the 
space spanned by the columns of X. 

The AD of the model is 
defined as a squared area 
within the ±3 band for 
standardised residuals and the 
leverage threshold 
[h*=3(p+1)/n], where p 
denotes the number of 
variables and n signify the 
number of data points. 

 Hotelling T2 
test 

It is a multivariate student’s t test and 
presumes a normal data distribution. 
Statistical significance of the disparity on 
the means of two or more variables 
between two groups is assessed.  

AD is determined with the t 
value. The significant 
compounds remain within the 
determined AD. 





n
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Table 4: contd…. 

Probability 
density 

distribution 

Parametric 
method 

It assumes a standard distribution such as 
Gaussian and Poisson distributions 

Real data distribution is 
captured without help of any 
reference data point. 
Individual data points are 
checked whether they belong 
to the set. 

Non 
parametric 

method 

It does not rely on such assumptions 
considering the data distribution 

CONCLUSION 

With the introduction of modernized chemometric tools, a great number of researches 
have been originated for to the expansion of a noteworthy relationship between 
molecular structure and function, specifically in the fields of medicine and predictive 
toxicology. Exciting and encouraging outcomes of QSAR approaches are noticed in 
the process of drug design for the last two decades. Here, we have tried to discuss 
current best practices validation metrics for constructing robust and predictive QSAR 
models among the QSAR researchers. Like any computational approach, it is vital that 
the QSAR method is taken as a technically trustworthy device for predicting the 
biological activities/properties/ toxicities of untested drug/chemicals. To make it 
transferable and acceptable to the scientific community, validation metrics along with 
the mechanistic interpretation are of the utmost importance for any developed QSAR 
model. A wide range of validation techniques have also been proposed for identifying 
the capability of QSAR models to predict the activity of NCEs. Predictive potential of 
QSAR models is judged from the internal as well as by the external validation tests 
based on the training and external test set molecules respectively. Moreover, a single 
metric may often prove to be inadequate for assessing the performance of a model and 
therefore overall validation parameters should be considered for selection of the ideal 
QSAR model for a particular endpoint. Therefore, this book chapter has focused on 
the critical metrics of QSAR modelling to allow their proper utilization. The discussed 
metrics should be helpful to both computational and synthetic chemists as well as 
experimental biologists who are working in biological screening of chemical libraries 
using QSAR models. 
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ABBREVIATIONS 

AD = Applicability Domain  

AIC = Akaike’s information criteria  

AUC = Area Under Curve 

CCC = Concordance Correlation Coefficient  

GA = Genetic algorithm  

ITS = Internal test set  

LDA = Linear Discriminatory Analysis 

LMO = Leave-many-out  

LOO = Leave-one-out  

MCC = Matthews correlation coefficient  

MIC = Model Instability Coefficient 

MLR = Multiple Linear Regression 

MVIC = Model Value Instability Coefficient  
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NCE = New Chemical Entity 

OECD = Organization for Economic Cooperation and Development 

PCA = Principal Component Analysis 

PDD = Pharmacological distribution diagram  

PRESS = Predicted residual sum of squares 

QSAR = Quantitative structure-activity relationship  

RIE = Robust initial enhancement  

RMSEP = Root mean square error in prediction  

ROC = Receiver operating characteristics  

ROCED = ROC graph Euclidean distance 

ROCFIT = ROC graph Euclidean distance corrected with Fitness Function 

SDEP = Standard deviation of error of prediction  

SLR = Sum of the log of ranks test  

VIF = Variance inflation factor  
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CHAPTER 4 

Density Functional Studies of Bis-alkylating Nitrogen Mustards 

Pradip Kr. Bhattacharyya*, Sourab Sinha, Nabajit Sarmah and Bhabesh 
Chandra Deka 

Department of Chemistry, Arya Vidyapeeth College, Assam-781016, India 

Abstract: Nitrogen mustards are the most extensively used chemotherapeutic agent 
since their evolution in the mid-1940s. The high degree of cytotoxicity of these drugs is 
attributed to their ability to form DNA interstrand cross-linked adducts, thereby 
inhibiting DNA replication. Interstrand cross-linking occurs via formation of an 
unstable intermediate, the aziridinium ion and formation of mono-adducts. Mustine, the 
first member of this family, suffers from some serious drawbacks such as high rate of 
hydrolysis. Therefore its stable analogs have been sought; and since its discovery 
hundreds of analogs have been synthesized. 

This article presents a brief introduction to nitrogen mustards and deliberates on the 
works already devoted to establishing the mechanism of action of this class of drug. A 
brief discussion on DFT and DFRT is also furnished in section 1.2. Further, 
computational studies performed on nitrogen mustards are discussed in section 1.3 and 
1.4. Section 1.4 of the article consists of research works from our group and has special 
reference to DFT and DFRT. 

Keywords: Anticancer drug, aziridinium ion, bis-alkylating agent, cancer 
chemotherapy, chemical hardness, chemical potential, chlorambucil, 
computational chemistry, density functional theory (DFT), density functional 
reactivity theory (DFRT), DNA alkylation, external electric field, maximum 
hardness principle, minimum electrophilicity principle, melphalan, Mustine, 
nitrogen mustards, reactivity descriptors, steroid-linked nitrogen mustard, 
structural variation. 

INTRODUCTION TO NITROGEN MUSTARDS 

The world has always witnessed some great accidental discoveries. Evolution of 
nitrogen mustards as chemotherapeutic agent is a perfect example of such miracle.  
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The mustard gas (sulphur mustard, (1)), initially used as a chemical weapon, was 
responsible for thousands of deaths during World War I [1]. In a subsequent 
development, Louis S. Goodman and Alfred Gilman were recruited by the United 
states Department of Defence to investigate the potential therapeutic application 
of this chemical warfare agent. They observed that sulphur mustard is too volatile 
to be used in laboratory experiments, so they replaced the sulphur atom with 
nitrogen and synthesized a more stable product, mustine (2), the first member of 
the family called ‘nitrogen mustard’. 

S
ClCl

(1)  

N
ClCl

CH3

(2)
 

It was ostensibly one of the greatest discoveries in the field of medicine that 
ushered in the advent of cancer chemotherapy. Mustine, also called 
mechlorethamine or mustragen (2), is the earliest member of the nitrogen mustard 
family and is still being used as a potent anticancer drug [2]. A number of drugs 
of this family have been synthesized and their antitumor activity has been 
analyzed. 

Though, the mode of action of both sulphur and nitrogen mustards are similar, due 
to highly volatile nature of sulphur mustard, it has been thrown out of the frame. 

Nitrogen mustard is termed as biological alkylator or an alkylating agent. 
According to Ross, an alkylating agent is a chemical compound that can replace a 
hydrogen atom in a molecule by an alkyl group [3]. In Oncology, the term 
alkylating agent refers to any antineoplastic compound that irreversibly binds (by 
formation of covalent bonds) to a variety of susceptible biomolecules such as 
nucleic acids, proteins etc. The simplest result of covalent bond formation with 
DNA is the cell death. 

Establishing the mechanism of action of nitrogen mustards has been a formidable 
challenge for the researchers. A plethora of attempts have been made to 
understand the mechanism of action of these drugs, the first been made by 
Chanutin and Gjessing in 1946 [4]. They used UV-spectroscopy to show that 
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mustine reacts with DNA bases, but could not specify the group reacting with. 
Nucleic acids contain various centers which are vulnerable to attack by nitrogen 
mustards under physiological condition. On analyzing the product between the 
mustard gas and nucleic acid, Elmore et al. [5] confirmed that both basic and 
phosphate groups are prone to attack. But a conclusion regarding specific site of 
alkylation still eluded. This was followed by a number of studies to clarify the 
alkylation site; [6-10]; Wheeler and Skipper performed experimental studies on 
in-vivo alkylation of DNA [8]. Brookes and Lawley studied alkylation of  
35S-labelled mustard gas with nucleic acids in neutral aqueous solution at 
physiological temperature (37 C) [11] and confirmed the reaction of mustard gas 
with DNA and RNA bases. 

A number of studies have confirmed that alkylation of DNA by nitrogen mustards 
passes through the formation of aziridinium ion [12-14]. The first step of the 
alkylation reaction involves donation of a lone pair of electron from the N-center 
of the nitrogen mustard to the chloroethyl side chain with the release of a chloride 
ion (Cl-), forming an aziridinium (Az+ ) ion (step 1, Scheme 1). Being a positively 
charged species, the Az+ ion is highly unstable and reacts immediately with the 
nucleophilic centers in biomolecules, (attack at guanine N7 is shown in step 2, 
Scheme 1) [15-16]. This leads to the formation of a drug-DNA mono-adduct. The 
mono-adduct further cyclizes to form a second aziridinium (Az2+) ion (step 3, 
Scheme 1) which can bind to a second DNA strand resulting in a drug-DNA 
cross-linked adduct (step 4, Scheme 1). 

Usually, all the heteroatoms in DNA/RNA bases exhibit higher tendency to 
interact with electrophiles like aziridinium ion [17-18]. Among different 
nucleophilic centers present in DNA bases, N1, N3 and N7 in adenine, N1, N3 
and O2 in cytosine, N3 and O4 in thymine, N3, N7 and O6 in guanine are some of 
the highly preferred sites for alkylation. However, alkylation at these reactive sites 
depends on the reaction conditions [19-26]. It is expected that, due to steric 
hindrance, access to some sites in a double-stranded DNA is limited as compared 
to a single stranded DNA. Factors determining the selectivity of an alkylating 
drug towards DNA bases are very complicated [27-28]. The order of reactivity of 
the nucleophilic sites of the bases towards alkylating agent is: guanine N7 > 
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adenine N1 > cytosine N1 > adenine N3 in RNA and guanine N7 > adenine N3 > 
cytosine N1 in DNA [29]. 
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Scheme 1: Mechanism of DNA alkylation by nitrogen mustards. 

Lawley and Brookes [30] confirmed that cytotoxic action of sulphur and nitrogen 
mustards is not associated with the inhibition of cell growth as measured by RNA 
and protein synthesis but is caused due to interstrand cross-linking in DNA. 
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Cytotoxicity of nitrogen mustards is associated with decreased DNA synthesis 
because of DNA interstrand cross-linking, which prevents DNA replication. 
Interestingly, intensity of cross-linking of DNA by nitrogen mustards depends 
upon the size of the DNA fragment reacting with. Cross-linking by nitrogen 
mustards takes place through bis-alkylation at guanine N7 in right handed B DNA 
in 5-GC-3 or 3CG-5 sequence. 

Inspite of the substantial amount of research works devoted to the understanding 
of alkylation of DNA, prior to work of Mattes et al. [31], DNA sequence 
selectivity towards guanine N7 was not properly understood. The group attached 
to N atom in nitrogen mustards affects the reactivity of aziridinium ion. This in 
turn might have some influence on sequence selectivity [32]. 

The dynamics of DNA alkylation and reactivity of different nucleic acids towards 
alkylation depends on different factors. Reactivity of different sites of guanine 
depends on the type of bases it is surrounded with. Compared to an isolated 
guanine, an enhanced rate of the reaction was observed for guanine N7 when it is 
surrounded by other guanines. The reaction of the drugs with isolated DNA is 
completely different from that in intact cells. The cellular environment also plays 
an important role during the alkylation reaction although it does not alter the 
sequence specificity. Limited diffusion of the drug molecule into the cell, 
alkylation reaction to other cellular components, etc. are some of the factors 
which determine the extent of alkylation in intact cells and in isolated DNA [33]. 
Pullman et al. [34] studied the effect of adjacent base pairs on molecular 
electrostatic potential (MEP) in the vicinity of various positions in B-DNA for 
both single and double stranded DNA. Another important point to note is that, 
both aliphatic and aromatic nitrogen mustards show similar sequence selectivity. 

Price et al. [35] studied the reactivity of mono-functional nitrogen mustards 
(having only one chloroethyl chain) and observed that this class of nitrogen 
mustards was not much effective in preventing DNA replication due to its 
inability to form cross-linked adducts. 

Nitrogen mustards form interstrand as well as intrastrand cross-linked adducts 
with DNA. However, formation of interstrand cross-linked adducts is favored 
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over intrastrand adducts. This is because, the distance between the two chlorine 
atoms in nitrogen mustards is 7 Å and thus it becomes difficult for the second 
aziridinium ion to alkylate a second guanine of the same strand which is separated 
from the first by a distance of 8.9 Å in a B-DNA. This makes intrastrand cross-
linking more difficult and thus mono-adduct happens to be the major portion 
(90%) of the alkylated products [36]. The cytotoxicity of nitrogen mustards is 
proved to be allied with its ability to form interstrand cross-linked adducts that 
prohibits DNA replication and transcription and ultimately leads to cell death [37, 
38]. However, a mono-adduct is found to be less cytotoxic compared to cross-
linked adducts. 

Apart from DNA-DNA intra- and interstrand cross-linking, there is another 
possibility of formation of a cross-linked adduct i.e. the DNA-protein cross-linked 
adduct, Scheme 2. A number of studies have confirmed the formation of such 
DNA-Protein cross-linked adducts [39-42]. 

The mystery behind the mode of action of the drug has been unfolded but then 
another controversy crops up: what leads to cytotoxicity of nitrogen mustards: 
intra- or interstrand cross-linking? Kohn tried to provide an answer to this 
question. He suggested that out of the different lesions formed during alkylation 
of DNA, interstrand cross-links are presumed to be particularly cytotoxic [43]. 
His assumption was based on the fact that the bis-functional drugs are more 
cytotoxic compared to mono-functional drugs [44]. Moreover, potency to form 
cross-linked adduct is not the sole criterion for cytotoxicity of a drug; instead, low 
rate of repairing of damaged DNA is also responsible for cytotoxicity. Thus, 
cytotoxicity of a drug molecule is affected by DNA repair [45]. In cultured cells, 
DNA interstrand cross-links comprise of 30-40% of the total DNA cross-links 
(excluding intrastrand cross-links), while the remaining constitutes DNA-protein 
cross-links [46]. 

Cytotoxicity of a drug depends on the rate of removal of the cross-linked adducts 
which varies from drug to drug. For example, the rate of removal of cross-linked 
adducts for melphalan is higher than that of mustine [46]. Moreover, relationship 
between DNA damage and repair of damaged DNA is also an important factor.  
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Scheme 2: DNA-protein cross-linking. 

Consequences of DNA Alkylation 

Under physiological conditions, keto-form of guanine is more stable than its enol-
form. An important consequence of guanine alkylation is the formation of 
ammonium ion which makes guanine more acidic and hence shifts the keto-enol 
equilibrium towards the enol-tautomer [47, 48]. Now a different chemistry starts 
emerging in hydrogen bond formations between guanine and other bases. In its 
usual physiological form, (keto-form) guanine pairs up with cytosine forming 
three hydrogen bonds (3a). However, in its enol-form, guanine is not in a suitable 
position to pair up with cytosine, instead it has now gained the structure which is 
very much suitable for pairing up with thymine (3b). Thus alkylation of DNA at 
guanine N7 leads to the miscoding in DNA.  
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(3) Miscoding due to alkylation at guanine N7 

Similar miscoding in DNA results when alkylation occurs at the guanine O6; it 
alters the normal hydrogen bonding between guanine-cytosine base pair and 
results in the formation of guanine-thymine base pair (4) [49-53].  
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(4) Miscoding due to alkylation at guanine O6 (guanine-thymine pairing) 

As a result of alkylation at the endocyclic nitrogen atoms in DNA bases by 
aziridinium ions or other electrophiles, the nucleobases acquire a positive charge 
and result in destabilization. For example, alkylation at guanine N3 or N7, 
adenine N1, N3 or N7 and cytosine N3 results in unstable lesions. To neutralize 
the additional formal charge(s) imparted to the nucleobases, they undergo further 
reaction. There are three types of reactions involved in decomposition of alkylated 
bases [54]: 

a) Deglycosylation or depurination or depyrimidination: it involves 
hydrolytic loss of the alkylated base from the DNA backbone. 

b) Ring opening: opening of pyridine ring. 
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c) Reverse alkylation: loss of the alkyl group from the base. 

Deglycosylation (Depurination or Depyrimidination) 

Under normal physiological conditions, the glycosidic bonds holding the DNA 
base to sugar-phosphate backbone are quite stable and resistant to hydrolysis [55]. 
Breaking of these glycosidic bonds is referred to as deglycosylation (5). Under 
physiological conditions, the rate of deglycosylation of cytosine and thymine is 
extremely slow (rate constant=1.510-12 s-1, half life=14,700 years), and in case 
of guanine and adenine it is slightly faster, (rate constant = 3.010-11 s-1, half life 
= 730 years). In contrast, the rate of deglycosylation is quite high in alkylated 
bases. The degree of destabilization depends on the site of alkylation as well as on 
the nature of the attacking electrophiles and varies among the bases. For example, 
the half lives for deglycosylation of bases (with simple alkyl groups) are: N7 of 
dA is 3 h, N3 of dA is 24 h, N7 of dG is 150 h, O2 of dC is 750 h; for O2 of dT 
and N3 of dC, the half lives are slightly higher: 6300 h and 7700 h respectively 
[54-58].  
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(5) Deglycosylation 

In alkylated DNA, attachment of an electrophile (e.g. aziridinium ion) to the 
guanine N7 increases the electrophilicity at the adjacent positions. As a result of 
this, leaving group ability of the alkylated base increases resulting in scission of 
the C-N bond (glycosidic bond) and because of this an extraordinary increase in 
deglycosylation rate is observed [54, 59-60]. However, in DNA duplex, the rate of 
deglycosylation is slower as compared to a single stranded DNA or monomeric 
nucleosides. Gates et al. [54] observed that the reaction is 50-100 times slower in 
DNA duplex compared to monomeric nucleosides. 
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Purine Ring Opening 

Another possibility of degradation of alkylated DNA is through purine ring 

opening as illustrated in (6). As a result of guanine N7 alkylation, electrophilicity 

of the C8 center in the purine ring increases and this facilitates purine hydrolysis. 

Hydrolysis at the C8 position of the purine ring (6a) leads to an intermediate (6c), 

which undergoes further fragmentation. For example, attack on C8 position of 

alkylated guanine by hydroxide ion leads to the fragmentation of imidazole ring 

[61-64]. Intermediate (6c) further undergoes anomerization to afford intermediate 

6d and subsequent DNA strand scission.  
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(6) Ring opening in alkylated guanine 

Ring opening mechanism in case of N1 alkylated adenine is different from that of 

N7 alkylated guanine. It passes through Dimroth rearrangement [65]. N3 

alkylated adenine also undergoes ring opening under basic condition but at a 

slower rate as compared to deglycosylation [66]. Usually, under physiological 

conditions, the rate of ring opening is quite slow compared to deglycosylation 

[67]. Therefore, deglycosylation is expected to be primarily responsible for 

degradation of alkylated DNA. 
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Reverse Alkylation 

The alkylated DNA may undergo reverse alkylation (loss of alkyl group). Reverse 
alkylation has in fact been observed for some alkylating drugs (not in case of 
nitrogen mustards). Especially few drug molecules, such as CC-1065 (alkylate 
adenine N3), duocarmycin (alkylate adenine N3), leinamycin (alkylate guanine 
N7) alkylate DNA to show subsequent reverse alkylation [68-70]. 

Nitrogen Mustard Derivatives 

Mustine suffers from some demerits that arise due to highly reactive nature of the 
aziridinium ion (Az+ ) produced by it. Because of its highly reactive nature, it is 
very prone to hydrolysis and reacts immediately with the nucleophilic centers in 
biomolecules. Because of this it is marketed as a dry solid and just prior to 
injection, its aqueous solution is prepared. Therefore, more stable analogs of 
mustine were looked for. Substitution of the methyl group (which is not possible 
in case of sulfur mustard) on the N-atom of mustine by aryl groups makes the N-
atom less nucleophilic and slows down the rate of Az+ ion formation [32]. This 
lowers the reactivity of the nitrogen mustards and, as a result of this stabilization, 
some of the drugs can be administered orally. Again, compounds prepared by 
simple aryl substitution at the N-center of mustine are water insoluble and hence 
are not suitable to be used as drugs. However, carboxyl and/or amine-containing 
aryl substituted mustine are water soluble and are not as reactive to water as 
mustine. Examples of such drugs are chlorambucil (7) and melphalan (8) etc. The 
carboxyl group in these drugs is not connected to the phenyl ring directly so as to 
make them more reactive or otherwise the lone pair present at the N-center may 
delocalize. To avoid this, methylene groups are inserted in between phenyl and 
carboxylic groups. Some other examples are phosphoramide mustard (9), uracil 
mustard (10), quinacrine mustard (11), bendamustine (12) etc. 

Number of attempts has been made in the past few decades which yielded many 
successful outcomes. As for example, Ross and coworkers [71] synthesized four 
aromatic nitrogen mustards (13) (with n = 0-4) containing carboxylic substituted 
derivatives of N,N-di-2-chloroethylaniline. Robert et al. [72] prepared cinchophen 
derivatives of nitrogen mustard (14). 
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Attempt were also made to introduce iodo- group instead of chloro- group in 

chlorambucil, however it was found to be less active than chlorambucil against 

the Walker tumour and Sarcoma 180 [73]. Creech et al. [74] made an important 

study and tested the activity of 140 compounds, including mustine, chloroquine 

mustard, camoquine mustard, quinacrine mustard, nitromin, uracil mustard, 

chlorambucil, melphalan, cyclophosphamide, nor-mustard, cinchophen mustard, 

and numerous new analogs of nitrogen mustard. Interestingly, most of the 

quinoline and acridine analogs were observed to be highly active from the stand 

point of low molar dosage. Derivatives of chlorambucil and melphalan were also 

synthesized by incorporating into several peptide hormones, including luteinizing 

hormone-releasing hormone (LH-RH) [75]. 

After the discovery of mercaptopurine, which has very high antitumour activity, a 

number of attempts have been made to synthesize its derivatives [76]. Substitution 

at 1-, 3- or 7- positions of mercaptopurine exhibited no significant activity [77-

79]. However, substitution at the 9-position imparts anticancer activity to the 

molecule [80, 81]. 

Other important chemotherapeutic agent that has been successfully applied 

against cancer includes uracil mustard (10) [82-85] and its derivatives [86-88]; 

and estramustine (15), used in the treatment of advanced prostatic carcinoma [89]. 

Intercalating drugs are another important class of drugs that have been used 

successfully in cancer chemotherapy. These drugs exhibit their cytotoxicity by 
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intercalating between the DNA base pairs. Intercalating ability of 9-amino 

acridine (16) is well established and a number of nitrogen mustard analogs have 

been synthesized by incorporating the intercalating chromophore [90, 91].  
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The mechanism of action of these drugs consists of two steps. Initially, the drug 
intercalates between the DNA base pairs and then alkylation takes place. Such a 
two step reaction (intercalation followed by alkylation) results in 10-100 fold 
lower concentration of acridine mustard required to alkylate DNA compared to 
mustine. Aniline mustard analog, m-AMSA (17) was prepared by linking a 
mustard residue to the aniline ring or acridine chromophore [92], but the 
derivatives did not show any enhanced activity as compared to the parent 
compound, AMSA. However, introduction of a short spacer between the nitrogen 
mustard and 9-anilinoacridine increases the reactivity [93]. 9-anilinoacridine and 
acridine derivatives, bearing nitrogen mustard residue at C4 of the acridine 
chromophore, were found to possess potent cytotoxicity against human leukemia 
and various solid tumors in-vitro [94]. To improve the chemical stability and 
therapeutic efficiency, efforts have been made to synthesize aniline nitrogen 
mustards linked to 9-anilinoacridines via urea linkage [95]. Derivatives with the 
nitrogen mustard residue linked to the C3 or C4 position of the anilino ring with 
an O-ethylene (O-C2), O-butylene (O-C4), and methylene (C1) spacer were 
prepared. A few of them were reported to possess approximately 100-fold more 
potency than its parent analog AHMA [96]. Series of compounds were also 
synthesized with nitrogen mustard pharmacophore on both anilino (C3 or C4) 
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and acridine (C4) rings with O-ethyl (O-C2) or O-butyl (O-C4) spacer and these 
compounds exhibited significant in-vitro cytotoxicity [97].  
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Tallimustine (18), a benzoic acid nitrogen mustard derivative of distamycin A 
(19) is also an effective antitumor drug that has been used as an important model 
for designing new nitrogen mustards containing pyrrole-amide unit [98].  
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Tallimustine consists of three pyrrole-amide units (n = 3, 18). Cytotoxicity of 
benzoic acid mustard conjugated with pyrrole ring was examined [99]. The di-
pyrrole and tri-pyrrole conjugates did not produce any detectable guanine N7 
alkylation but only alkylate AT tracts. Baraldi et al. [100] synthesized benzoic 
acid mustard (BAM) derivatives of distamycin A, bearing one or more pyrazole 
rings and tested their in-vitro and in-vivo activities against L1210 leukemia. Some 
of these derivatives showed activity comparable to tallimustine. All the 
compounds bearing the pyrazole ring close to the BAM moiety showed reduced 
cytotoxicity in comparison to derivatives characterized by the BAM linked to a 
pyrrole ring. No such effects were observed when conjugation was made to the 
amidine terminus of the oligopeptidic frame. Benzoheterocyclic analogs of 
tallimustine were not showing any enhanced activity [101].  
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PNU-157911 (20) is one of the most important nitrogen mustard derivatives. In an 
effort to examine the role of amidino group present in PNU-157911, a series of 
cinnamoyl nitrogen mustards (pyrazole analogs of tallimustine) were synthesized 
in which the amidino moiety was replaced by other moieties [102]. These 
modifications on the amidino moiety showed significant growth inhibitory 
activity against mouse leukemia L1210 cells. They also showed the capability to 
interact with DNA with sequence selectivity for certain AT-rich sequences. 
Compounds of this series possess a pattern of alkylation similar to that of 
tallimustine, but they apear to be less reactive. Therefore, presence of the amidino 
moiety or a basic moiety in general is not an absolute requirement for biological 
activity. In-vitro and in-vivo activities of novel benzoyl and cinnamoyl nitrogen 
mustard and half-mustard derivatives of distamycin A, in which the amidino 
moiety was replaced by moieties of different physico-chemical features, were also 
reported [103, 104]. As reported by Wang et al. [105], anticancer activity of 
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distamycin A and nitrogen mustard conjugates, in which the nitrogen mustard unit 
is coupled to the C-terminus of the pyrrole is observed to depend on the number 
of pyrrole rings; compound bearing three pyrroles is more potent than compounds 
bearing one or two pyrrole ring(s). Generally, it is observed that for distamycin 
nitrogen mustard, potency of the compound increases approximately 10-fold with 
the addition of one pyrrole unit up to a total of four pyrrole units. Interestingly, 
switching the nitrogen mustard unit from the N-terminus to the C-terminus of the 
pyrrole did not compromise with the cytotoxicity of the compounds. Distamycin 
nitrogen mustard derivatives with different substituents at the amidino moiety 
located at the C-terminal of the peptide were synthesized by Wang et al. [106]; 
compounds bearing a terminal ethylamido group show good antitumor activity 
against human chronic leukemia K562 cells. 

Although the nitrogen mustard derivatives possess revolutionized anticancer 
activity, it also has got some serious drawbacks. These compounds are too polar 
to cross the highly lipophilic Blood Brain Barrier (BBB) and because of this, 
these drugs have very low brain penetration. Therefore, anticancer agents with 
highly hydrophobic nature are sought for the treatment of cerebral tumors. One of 
the most promisimg approaches to design CNS active anticancer drug is the 
prodrug approach. This approach is based on redox system, analogus to the 
NADHNAD+ coenzyme system. In a novel attempt Sing et al. synthesized 
nicotinic nitrogen mustards that are hydrophilic in nature and can easily enter into 
brain and then are oxidized to quarternary salts which can not efflux from brain 
cells [107]. Based on redox prodrug approach a number of anticancer drugs have 
been synthesized [108-113]. 

Because of two important properties viz. preferential accumulation in neoplastic 
cells and inhibition of glycolysis, deoxygluocose, can also be attached to nitrogen 
mustard for the treatment of brain tumors. Successful attempts have been made to 
synthesize such derivatives by attaching the chlorambucil moiety to the glucose 
unit [114, 115]. Singh et al. prepared such a class of nitrogen mustard derivatives 
linked to CNS (central nervous system) active compound 1,4-benzodiazepine 
[116]. Efforts have also been made to decrease the lipophilic nature of 
chlorambucil and melphalan by preparing quaternary ammonium conjugates 
[117]. Though, quaternary ammonium functionalization does not alter the 
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cytotoxicity, it modifies the cell uptake by decreasing lipophilicity of the drug 
molecules. 

Napromustine, (21) derivative of napthalimide, displays an excellent antitumor 
activity in-vivo against Sarcoma-180 and Ehrlich ascites carcinoma compared to 
that of fluorouracil. Other derivatives of Napromustine, such as nitro (mitonafide) 
and amine (amonafide), have also been tested, but no significant enhancement in 
cytotoxicity is observed [118]. 

N

Cl

Cl

N

O

O

 

(21) 

Structurally modified carnitine analogs have been observed to show enhanced 
anticancer activity compared to chlorambucil against A375 human melanoma, 
HT29 resistant type colon carcinoma and MCF7 human breast carcinoma cells 
[119]. Cyclic nitrogen mustards, structurally related to L-carnitine are effective 
[120] and their trans-isomer produces better cytotoxicity than the cis-isomer. 

Neocarzinostatin (NCS), an antitumor antibiotic, is a protein-chromophore 
complex that exhibits cytotoxic action through DNA cleavage via H-abstraction 
[121]. Cytotoxicity of such drugs resides with the chromophore moiety alone, 
while the protein (apoNCS) protects and transports the labile chromophore. The 
naphthoate portion (22) of NCS chromophore is the most important site for 
binding to apoNCS and DNA intercalation. Attempts have been made to use 
apoNCS to improve the hydrolytic stability of the novel bis-functional DNA 
alkylating agents, melphalan and chlorambucil [121]. Though the melphalan 
conjugate (23) exhibits higher in-vitro cytotoxic activity against human leukaemia 
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cell line K562 than the unmodified melphalan, the inverse was observed in case of 
chlorambucil conjugate. 

Another new series of anticancer drugs called chimeric compounds, bearing the 
combretastatin (24) and the nitrogen mustard moieties have been synthesized. 
Amazingly, when combretastatin is attached to chlorambucil via an ester linkage (25), 
the resultant compound proves to be significantly more potent than the combined 
potency of the individual drugs. However, when combretastatin is conjugated to 
nitrogen mustard via an ether linkage, loss in its potency is reported [122]. 

Benzoic acid derivatives are observed to be potential EGFR (Epidermal Growth 
Factor Receptor) and HER-2 (Human Epidermal Growth Factor Receptor 2) 
kinase inhibitor [123]. Especially, derivatives containing arylamine moiety show 
better inhibitory activity than those containing fatty amine moiety. 

Melphalan and chlorambucil derivatives of 2,2,6,6-tetramethyl-1-piperidinyloxy 
radicals also show good potency against human leukaemia K562 cell line [124].  
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Nitrogen mustard derivatives of 4-anilinoquinazoline, where the nitrogen mustard 
pharmacophore is attached to the C6 of the 4-anilinoquinazolines via a urea 
linkage, are found effective against breast cancer [125]. Recently, aromatic ring of 
natural pyrimidine base has been replaced to obtain a thymine derivative of 
chlorambucil [126]. 

Aromatic bisamidines, such as berenil, pentamidine, propamidine and furamidine, 
are well-known antimicrobial and antifungal drugs [127-129]. Amino analogs of 
pentamidine with tetra- and hexa-methylene chain between aromatic units show 
antiproliferative activity against MCF7 (Michigan Cancer Foundation-7) breast 
cancer cell line of mammalian tumour and inhibitory influence on the activity of 
topoisomerase I and II [130]. Amino analogs of pentamidine with a 
polymethylene (n=3-6) chain and their chlorambucil analogs exhibit cytotoxic 
effect on MCF-7 human breast cancer cell line [131]. 

Because of their important biological and pharmacological properties, 
isoflavonoids have attracted considerable research interests for a long time. 
Formononetin, a type of isoflavonoids, has been reported to show many biological 
activities including antioxidant, antidiabetic, antiestrogenic, antibacterial, 
antiangiogenic effects and so on. Studies have shown that formononetin and its 
derivatives exhibit potent antiproliferative activities against two human tumor 
cells (Jurkat and HepG-2) in-vitro [132]. Recently, a series of formononetin 
nitrogen mustard derivatives have been synthesized and their cytotoxicity has 



Density Functional Studies of Bis-alkylating Nitrogen Frontiers in Computational Chemistry, Vol. 2   141 

been evaluated in-vitro against five cancer cell lines (SH-SY5Y, HCT-116, DU-
145, Hela and SGC-7901). Many of them display more potent cytotoxicity 
compared to melphalan [133]. 

Recent findings show that the uptake of polyamine compounds such as amino 
acids (e.g. methionine) in cancer cells is high. Omoomi et al. [134] have 
synthesized chlorambucil-methionine conjugate and tested it against breast cancer 
MCF-7 cell line and observed high antineoplastic properties without any 
abnormal toxicity. The conjugate has also showed very good anticancer activity 
comparable to chlorambucil and less toxicity. Hence chlorambucil-methionine 
conjugate has been considered to be a better option for the treatment of breast 
cancer than Chlorambucil. 

Further, in order to increase their antitumor potency and tumor selectivity, 
bendamustine and melphalan have been esterified with N-(2-hydroxyethyl) 
maleimide and connected by diamines with various chain lengths. Expectedly, the 
two new derivatives showed higher cytotoxicity compared to bendamustine and 
melphalan against breast cancer [135]. 

Studies of different hormone-linked antineoplastic agents reveal highly effective 
results in receptor positive tumors in-vivo [136]. Among these conjugates, the 
antitumor steroid hormone-nitrogen mustard combination is found to be quite 
successful [137]. It is expected that a lipophilic steroid carrier molecule would aid 
in the transport of the nitrogen mustard moiety to a specific target tissue more 
efficiently. Nitrogen mustard derivatives of androstane [138, 139], estrone [140] 
and estramustine phosphate [141-143] also exhibit high anticancer activity. 

In order to deliver a cytotoxic molecule to the cancerous cells, the most efficient 
technique is to replace the cholesteryl ester core by a suitable lipophilic cytotoxic 
agent. This leads to the formation of cytotoxic-LDL (Low-density lipoprotein) 
particles (reconstituted LDL or rLDL) that targets cancerous cell. Several such 
cytotoxic compounds were synthesized and observed to be suitable for cancer 
treatment [144]. Another important task is to improve the potency of rLDL by 
increasing the number of cytotoxic molecules on each carrier without reducing its 
hydrophobicity. Dubowchik et al. [145] synthesized mono-, bis- and tris- nitrogen 
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mustard derivatives of oleoyl-steroid carbamates (26-28), where the cytotoxic 
portion is attached away from the sterically congested steroid. The biological 
evaluation shows that the bis- nitrogen mustard (27) is twice as potent as mono- 
(26) and tris-mustard (28) [145].  
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Steroidal cyclophosphamide derivatives do not exhibit any cytotoxic effect [146, 
147]. However, steroidal nitrogen mustard derivatives of phenol and aniline 
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mustards showed anticancer activity against several cancer cells [148]. 
Chlorambucil and 3-nitrochlorambucil esters of prasterone and pregnenolone 
were tested against several human cell lines [MCF-7 (ER+), MDA-MB-468 
(ER−), MDA-NQ01, Widr, DAoy, H460, OVCA-3 and A375], out of which, the 
chlorambucil esters of prasterone displayed the highest anticancer activity [149]. 
Several estradiol-chlorambucil hybrids (the chlorambucil moiety was located at 
16 position of the steroid) have been synthesized for site-directed chemotherapy 
in breast cancer [150]. Marquis et al. [151] designed a steroid-nitrogen mustard 
hybrid by linking nitrogen mustard moiety to a steroid. 

Progesterone, when combined with chlorambucil, shows better biological results 
when tested among the rats. On the other hand, alkylating agent sensitive tumors 
do not respond well to the combination of melphalan and cyclophosphamide with 
prednisolone. Interestingly, a phase III trial assessing the ester of chlorambucil 
and prednisolone display better response rates on the treatment of patients with 
advanced breast cancer compared to the two independent drugs [152]. 

Arsenou et al. [153] synthesized a series of steroidal ester of para-[N,N-bis(2-
chloroethyl)amino]phenylacetic acid (PHE) and investigated the influence of 7-
carbonyl group in oxidized 5-steroids on the antileukaemic activity. Their results 
showed that the steroidal part not only transports the nitrogen mustard moiety into 
the cells, but also participates directly in the mechanism of antileukaemic action 
in an unidentified fashion. They also synthesized a few steroidal derivatives of 
chlorambucil and evaluated their antileukaemic activity in-vivo (against P388 and 
L1210) and in-vitro on normal human lymphocytes [154]. Same results were 
observed as for the PHE derivatives which indicate that the lactam function on the 
B-steroidal ring led to potent hybrids but not as potent as the analogus 7-keto 
derivatives. 

Steroidal hybrids possessing a lactam B-ring as well as 17-amide have been 
synthesized; steroidal skeletons that carry a NHCO group are observed to be more 
powerful than the analogous unmodified steroids bearing the same nitrogen 
mustard moiety [155]. Steroidal ring A-lactam nitrogen mustard is found to be 
active against mouse leukaemia L1210 and mouse Sarcoma 180 [156]. 
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Steroidal esters obtained by reducing the 5 double bond of steroidal ester of 
known hybrids containing the alkylating agent PHE or CHL (para-[N,N-bis(2-
chloroethyl)amino]phenylbutyric acid) also show potential antineoplastic 
properties [157, 158]. Hecogenin and aza-homo-hecogenin steroids when linked 
to PHE show important anticancer activity against Lewis lung carcinoma [159, 
160]. The activity of regioisomers of aza-homo-hecogenin has been observed to 
follow the order, ortho-> meta- > para- [161]. 

In summary, though earlier attempts to synthesize potent nitrogen mustards have 
been successful in overcoming the problem of drug resistance, the last few 
decades have witnessed a number of new nitrogen mustard derivatives 
synthesized by incorporating variety of groups in the N atom of mustine; 
incorporation of intercalating chromophore like 9-amino acridine has been 
particularly successful. Nitrogen mustard derivatives of distamycin, tallimustine 
are some other notably successful alternatives. CNS active chromophores have 
been successfully conjugated to nitrogen mustard to synthesize new candidates 
which can be used in cerebral tumour. In many cases conjugation of chlorambucil, 
melphalan and other nitrogen mustards to steroids have also resulted in new 
potent drugs. However, designing cell specific drugs still needs attention. 

INTRODUCTION TO DFT AND DFRT 

Density Functional Theory (DFT) 

Computational chemistry is one of the most fascinating branches of chemistry that 
is useful in resolving many problems in chemistry. It comprises of a wide variety 
of methods developed over the last century. Density functional theory (DFT) is 
one of the most widely used computational chemistry methods and has become an 
increasingly popular tool for understanding many atomic-level intricate processes 
and its application is growing rapidly. It is a powerful, successful and promising 
approach to calculate molecular structures, total energy of the system, vibrational 
frequencies, atomization energies, ionization energies, electric and magnetic 
properties, reaction pathways, etc [162-165]. 

Formulation of the two most captivating theorems by Hohenburg and Kohn [166] 
in 1964 helped DFT to become a full-fledged theory. The first HK theorem [167] 
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states that the electron density, ( )r   determines the external potential (i.e. due to 
the nuclei), ( )v r


. ( )r 

 also determines N, the total number of electrons, via its 
normalization: 

( )r dr N 
 

 (1) 

N and ( )v r


 determine the molecular Hamiltonian, 


H , which in turn determines 
the energy of the system via the Schrodinger equation: 

H E 


  (2) 

  being the electronic wavefunction, ( )r 
 determines the system’s energy and all 

other ground state electronic properties. The Hamiltonian operator,


H , involves the 
three energy factors: the kinetic energy, the energy due to interaction with the 
external potential  extV  and the electron-electron interaction energy  eeV , i.e.: 
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The second theorem restricts DFT to the studies of the ground states and 
establishes the variational principle. It states that for a fixed external potential 

( )v r


, if there is any positive definite trial density, t  coming from any N-electron 
wavefunction such that  t r dr N 

 
, then it corresponds to a higher energy 

state compared to the ground state, i.e.   0tE E  . 

The equation   0
ˆ

t t tE H E     follows immediately from the Variational 
theorem: 

  0E E   (4) 

Trivial solution of the above equation and a good knowledge of the ground state 
wavefunction can specify the energy of the excited state, much orthogonal to the 
ground state. 
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The two theorems proposed by Hohenburg and Kohn led to the discovery of the 
fundamental equation of DFT: 

     0E r dr N        
 

 (5) 

The energy E does not change upon variation of optimal ( )r 
, provided that 

( )r 
 integrates at all times to N (in equation 1).   is the corresponding 

Lagrangian multiplier and is also known as the chemical potential of a system.   
can also be written as the partial derivative of the system’s energy with respect to 
the number of electrons at fixed external potential  r 

: 

 

E
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 (6) 

 E   in equation 5 is independent of the external potential for a particular 
system and can be inserted into the equation (only if its form is known) to obtain 
the exact energy and density of that particular system. Thus, in equation 2, we can 
define energy functional,  E   as the sum of three terms: 

       ext eeE V V        (7) 

where,    is the kinetic energy,  extV  is the interaction with the external 
potential and  eeV  is the electron-electron interaction. 

The kinetic and electron-electron functionals are unknown and the interaction 
with the external potential is trivial: 

   extextV V r dr 


 
 

 (8) 

Kohn and Sham, [168] in 1965 have successfully come forward with their new 
formulation of replacing the kinetic energy functional    of the interacting 
particles with that of non-interacting ones leading to the self-consistent Kohn-
Sham (KS) equation which is described by a single determinant wavefunction in 
N orbitals, i . KS formulation is structurally very much similar to that of Hartree-
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Fock formulation; the only difference being that the non-local exchange potentials 
have been replaced by the local exchange-correlation potentials. Introduction of 
the variational orbitals has helped them to calculate the kinetic energy of the 
system with greater accuracy. Hence, we can determine the kinetic energy and 
electron density of a non-interacting system from the (variational) orbitals: 

  21

2

N

s i i
i

     


 (9) 

where, 
 

N

i
i

r 

 (10) 

( )r 
 provides the solution to the exact ground state density of a system of a non-

interacting electron. Taking classical Coulomb interaction into account,  HV  in 
the electron-electron interaction, equation 7 can be rearranged to 

         ext H xcE V V E          (11) 

where,  xcE   is the exchange-correlation functional and is simply the sum of the 
error made in using a non-interacting kinetic energy and the error made in treating 
the electron-electron interaction classically. 

Substituting the electron density of the energy functional (equation 11) in terms of 
ground state density of a system with non-interacting electrons (equation 10) and 
applying the variational theorem (equation 4), we find that the orbitals, which 
minimize the energy of a system, satisfy the following set of non-linear equation 
which describes the behaviour of non-interacting electrons in an effective local 
potential: 
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If the exact energy functional is known, the orbitals yield the exact ground state 
density via equation 10 and exact ground state energy via equation 11. 
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The Local Density Approximation (LDA) 

The exact form of the exchange and correlation energy represented by the fourth 
term of equation 11,  xcE   for a system is very challenging to calculate and 
hence some approximations are necessary to solve it. The most trustworthy 
approximation is the local density approximation (LDA). This approximation 
helps in constructing approximate form of the exchange-correlation energy 
functional for an inhomogeneous electron gas from the knowledge of exchange-
correlation energy of a homogeneous electron gas. As a result, the local 
approximations can also be considered synonymous with functionals. 

The local exchange-correlation energy per electron may be approximated as a 

simple function of the local charge density (say )( xc ), i.e. an approximation of 

the form: 

      xc xcE r r dr    
 

 (13) 

where xc  is the exchange-correlation energy density and is a function of density 

alone. The xcE  term can be separated into Ex and Ec 

xc x cE E E   (14) 

The solution to the first term of equation 14, i.e. xE  for a system with 

inhomogeneous electron density by applying the approximation results of a 

homogeneous electron gas gives us the expression: [169] 
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The exact correlation functional for a uniform electron gas is not known (except 

in high and low density limits) but the correlation energy of this system has been 

studied numerically and parameterized in the form of analytic functionals such as: 

[170] 
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where, 
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 and 3211 ,,,, A  and 4  are fixed parameters. 

The LDA predicts fairly accurate bond lengths and lattice constants, but severely 
overestimates atomization energies of molecules and solids. For comparison, the 
HF method, which is computationally more expensive than the LDA, predicts 
bond lengths much less accurately than LDA and overestimates atomization 
energies [171]. Various approaches, using different analytical forms for Ec, have 
generated several LDAs for the correlation functional, including: Vosko-Wilk-
Nusair (VWN) [172] Perdew-Zunger (PZ81) [173] Cole-Perdew (CP) [174] 
Perdew-Wang (PW92) [175] and many more. 

The Generalised Gradient Approximation (GGA) 

In foregoing discussion it is seen that LDA approximates the energy of a system by 
taking the energy of local constant density into account, but unfortunately it fails in 
some situations where the density undergoes rapid changes. The LDA uses the 
exchange-correlation energy for the uniform electron gas at every point in the system 
regardless of the homogeneity of the real charge density. But we encounter a very 
different case for non-uniform charge densities. In the later case, the exchange-
correlation energy deviates significantly from that observed in the system with 
uniform charge density. To overcome this problem some better approximations that 
can express the deviation in charge density in terms of gradients and higher spatial 
derivatives necessitates. Emergence of generalized gradient approximation (GGA) 
[176, 177] has become helpful in solving the problem of slowly varying charge 
density as it uses the gradient of the charge density to estimate this deviation 
correctly. The typical form for a GGA functional is: 

  ( , )xc xcE r dr    
 

 (17) 
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The most popular and widely used GGA functional in solid state physics as well 
as in computational chemistry is the Perdew, Burke and Ernzerhof (PBE) [178, 
179] and its modified form RPBE [180] and revPBE [181]. In one of their 
spectacular work, Perdew and co-workers [182, 183] have shown that it is 
impossible for a GGA to perform well for certain pairs of properties, e.g., both for 
atomization energies and lattice constants of solids. 

Meta-GGA Functionals 

Meta-GGAs are the most sophisticated semi-local functionals, incorporating 
important exact conditions with almost the same computational cost as that of 
GGAs. A meta-GGA functional in its original form includes the second derivative 
of the electron density (the Laplacian); it depends explicitly on the semi-local 
information in the Laplacian of the spin density or on the Kohn-Sham orbitals 
through the kinetic energy density [184-186]. The functional is written in the 
form: 

   2, , ,xc xcE r dr       
  

 (18) 

where the kinetic energy density τ is: 
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Some extensively used meta-GGA functionals are TPSSLYP1W, M06-L, M11-L, 
etc. Unfortunately, the meta-GGA functionals have not yet touched the level of 
accuracy of numerical performances when compared with the GGAs. As a matter 
of fact, they can be considered as a significant improvement for some properties 
only (e.g. thermochemistry) [187, 188], while they show very poor performances 
when some other molecular parameters are considered (e.g., geometries) [189]. 

Hybrid Exchange Functionals 

Axel Becke, in 1993, [190] has came forward with one of his spectacular findings; 
the hybridization with Hartree-Fock (exact) exchange provides with a simple 
scheme for improving results of molecular properties such as atomization 
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energies, bond lengths and vibrational frequencies, which tend to be poorly 
described with simple ‘ab-initio’ functionals [191]. 

The general principle lying behind this type of functionals is the mixing of 
fraction of ‘exact exchange’ with GGA semi-local exchange. The exact exchange 
energy functional is expressed in terms of the Kohn-Sham orbitals rather than the 
density, so it is termed as an implicit density functional. A hybrid exchange-
correlation functional is usually constructed as a linear combination of the 
Hartree-Fock exact exchange functional, HF

xE : 

       *
1 1 2 2 1 2

, 12

1 1
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x i j i j

i j

E r r r r dr dr
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One popular example of the hybrid exchange functional is the B3LYP (Becke, 
Three Parameter Hybrid Functional, Lee-Yang-Parr) [192, 193] having the form: 

 1Slater HF Becke VWN non local
x x x c cA E A E B E E C E           (21) 

where A, B and C are the constants determined by Becke via fitting the G1 
molecule set. A number of different functionals have been proposed in the last 
few decades [194-198]. However, it has been observed that a single functional is 
not suitable for handling different situations, rather shows applicability to some 
specific cases only. In contrast, the hybrid functionals show wide applicability 
[199]. 

Density Functional Reactivity Theory (DFRT) 

In the previous section we have discussed how density functional theory (DFT) 
proves itself as one of the most precious theories in determining the energy of a 
molecular system. But scientists are now interested to know some other chemical 
properties of systems (based on its electron density) such as chemical potential, 
chemical hardness, electrophilicity, nucleophilicity etc. that can well define the 
reactivity of a system. So, in order to quantify molecular parameters researchers 
have developed some quantum chemical models called reactivity descriptors. The 
foundation stone of these descriptors has been established by Robert G. Parr and 
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co-workers with the evolution of a second branch of DFT in 1970s and early 
1980s, also called the conceptual density functional theory or density functional 
reactivity theory (DFRT) [200-203]. The last few decades have seen the evolution 
of many fundamental concepts, such as frontier molecular orbital (FMO) [204-
206], electron localized function (ELF) [207, 208], molecular electrostatic 
potential (MEP) [209-213] and electronegativity equalization method (EEM) 
[214-218] that are extensively used to explain the stereo- and regio- selectivity of 
a wide variety of reactions. But these principles have remained empirical until the 
great theory by Parr came into play and provided the theoretical basis of these 
formal concepts. 

Reactivity descriptors (DFT based) are some sort of mathematical parameters, 
which help us to quantify chemical properties of a molecular system as a whole or 
at some selective sites. Global reactivity descriptors (GRD) such as global 
hardness (η), electrophilicity (ω), chemical potential (µ) etc. are used to define the 
properties of a molecular system as a whole, whereas local reactivity descriptors 
(LRD) such as Fukui functions (f), local softness (s) etc. are helpful in 
understanding the behavior and reactivity of chemical species at a particular site. 

Iczkowski and Margrave [219] expressed chemical potential (µ) as the negative 
element of electronegativity (). It is defined as the first derivative of energy with 
respect to the number of electron(s) N at constant external potential, ( )v r


. 

( )v r

E

N
         

 (22) 

Global hardness (η) [220] of an electronic system is defined as the second 
derivative of energy (E) with respect to the number of electron(s) N at constant 
external potential ( )v r


. 

2

2
( )( )

1 1

2 2 v rv r

E

N N


    

    
    

 (23) 

where  is the chemical potential of the system. 
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A discontinuity in the value of energy E with respect to the variation of N makes 
it practically difficult to evaluate chemical potential ( μ ) and chemical hardness  
(η ) [221-222]. In most of the numerical applications, μ  and η  are calculated 
using finite difference approximation [223] in terms of ionization potential (IP) 
and electron affinity (EA). A practical approach for evaluating IP and EA can be 
made from the plot of E versus N (29), generally these plots are not straight lines 
but are convex upwards. The curvature defines η  whereas the slope defines μ . 

E

N NN

Number of electrons

Slope = - IP

Slope = - EA

  2/EAIP
dN

dE
Slope 








 
2

2

d E
Curvature IP EA

dN

 
   
 

xxxxxxxxx

 

(29) 

Using finite difference approximation η and µ can be defined as: 

2

EAIP 


 (24) 

2

IP EA    
   (25) 

On the other hand, the ∆SCF method defines the terms, ionization potential (IP) 
and electron affinity (EA) of the system as: 
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NN EEIP  1  (26) 

1 NN EEEA  (27) 

where, NN EE ,1  and 1NE  are the energies of N-1, N and N+1 electron systems 
respectively. 

Thus, once the energies of the neutral (N), cationic ( N  ) and anionic ( N  ) 
systems are known, µ and η values can easily be evaluated from the following 
formulae 

2

)( 11  
 NN EE

 (28) 

2

)2( 11 NNN EEE 
 

 (29) 

Global softness (S) is defined as the inverse of η. 

1

2
S=

η  (30) 

Using the finite difference approximation, S can be approximated as: 

1
S

IP EA


  (31) 

Koopmans’ theorem [224] states that energy of HOMO (Highest Occupied 
Molecular Orbital) is equal to the negative of the first ionization energy (IP) of a 
molecular system. This theory is also formally useful for determination of 
electron affinities (EA), i.e. EA is equivalent to the negative of LUMO (Lowest 
Unoccupied Molecular Orbital). Unfortunately, the Koopmans’ theorem does not 
hold good for DFT as it is not an MO method. But, HOMO energy refers to the 
eigenvalue of the highest occupied KS orbital in DFT. Hence, some 
interpretations of the Kohn-Sham orbital energies are possible. Using Koopmans’ 
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theorem we can define IP and EA in terms of energies of HOMO ( HOMO ) and 
LUMO ( LUMO ) as: 

HOMOIP    (32) 

LUMOEA    (33) 

and therefore   and   can be expressed as: 

2
HOMOLUMO  


 (34) 

2
HOMOLUMO 





 (35) 

Parr and his co-workers [225] have proposed electrophilicity index (ω) as a 
measure of electrophilicity of a system, 

η

μ
=ω

2

2

 (36) 

It is a measure of the capacity of a species to accept an arbitrary number of 
electrons. Chattaraj et al. [226] have proposed a broader and very general local 
reactivity descriptor called philicity, which encompasses electrophilic, 
nucleophilic and radical reactions. Later, Roy et al. [227, 228] have outlined the 
limitations in applicability of this index and concluded that it may not always be 
logical to approximate the global reactivity to the local reactivity of the 
predominant site. Local electrophilicity index [229] is defined as: 

k kf   , (37) 

where, kf
  is the electrophilic Fukui function and 

kf  is the nucleophilic Fukui 
function. The condensed–to–atom variants for the atomic site k can be written as: 

k kf
   ; , ,0   . 



156   Frontiers in Computational Chemistry, Vol. 2 Bhattacharyya et al. 

where, , and 0   refer to nucleophilic, electrophilic and radical attack 
respectively. 

However, the condensed Fukui function (CFF, a local reactivity descriptor) bears 
a good significance in determining or in having a greater insight into a particular 
atom [230]. For an atom ‘x’ in a molecule with N electrons in a constant external 
potential, ( )r


, CFF can be obtained from finite different approximation as: 

)]()1([ 00 NNf xxx    for nucleophilic attack (38) 

0 0[ ( ) ( 1)]x x xf N N      for electrophilic attack (39) 

where, )( 0Nx , )1( 0 Nx  and 0( 1)x N   are electronic population on atom x 
in the molecule with N0, N0 + 1 and 0 1N   electrons respectively. 

Another important local descriptor is the local softness, defined as: 

ks S f   (40) 

Toro-Labbé et al. [231, 232] have proposed a dual descriptor (Δƒ), which is 
defined as the difference between the nucleophilic and electrophilic Fukui 
functions and is given by, 

   fff  (41) 

For Δƒ > 0, the site is favored for nucleophilic attack, whereas for Δƒ < 0, the site 
could hardly be susceptible to undertake a nucleophilic attack but may be favored 
for an electrophilic attack. The associated dual local softness [233] is defined as: 

   sss  (42) 

where, ks S f   and ks S f   

In recent past, these descriptors have been exploited to resolve a wide variety of 
structure and reactivity issues that includes global as well as local reactivity of 
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species, stability of systems, stability of conformations etc. and are well 
documented [234-248]. 

COMPUTATIONAL STUDIES ON NITROGEN MUSTARDS 

Though lots of experimental studies have been devoted to understand the action of 
these drug molecules, proper understanding in molecular level has been possible 
only with the help of methods of computational chemistry. Although not much of 
computational work has so far been witnessed in this field, their importance in 
this regard cannot be ignored. 

Hamza et al. [249] performed quantum mechanical study of S-methylated forms 
of sulfur mustard which can be considered as the pioneering computational work 
on nitrogen mustards as well. They performed HF calculations on episulfonium 
ion which shares a similar structure to that of Az+ ion with an S-center. They also 
calculated the energy barrier of the reaction pathway for bis-(2-chloroethyl) 
methyl sulfonium dication (MeHD2+). Shukla et al. [250] too have added some 
good piece of information based on quantum chemical studies on mustine. They 
have performed DFT and MP2 level of study on the reactions of mustine with 
different nucleophilic centers in DNA bases and observed some noteworthy 
results. The rate of the reaction is expected to be controlled by the magnitude of 
the free energy of activation. Gibb’s free energy of activation of mustine when 
reacted to guanine N7 is observed to be minimum (17.48 kcal/mol) followed by 
adenine N3 (18.05 kcal/mol) and cytosine N3 (21.94 kcal/mol). This study has 
attested the assumption of earlier experimental studies that nitrogen mustards 
react preferentially at guanine N7. However, while studying a reaction, interaction 
energy between the species should also be taken into account. They have observed 
that the binding energy for alkylation at different sites is negative, confirming the 
formation of stable adducts. However, results obtained for alkylation at O2 and 
O4 of thymine, guanine O6 and cytosine O2 are not in favor of the formation of 
stable adducts. Being a positively charged species, binding energy of Az+ ion with 
different nucleophilic sites in aqueous phase is found to be comparatively lower 
than that in the gas phase. The trend in aqueous phase (at MP2/6-31+g(d) level of 
theory) is observed to be: cytosine N3 > guanine N7 > guanine N3 > adenine N3 
> adenine N1 > adenine N7. Thus, the calculations performed by Shukla et al. 
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prove that guanine N7 and adenine N3 in DNA are the most probable sites of 
alkylation by nitrogen mustards, which is in agreement with previous 
experimental observations [251]. 

Hydrolysis of chlorambucil analogs have been studied by Pineda et al. [252]. 
Both the SN1 and SN2 reaction pathways are studied and it has been confirmed 
that the reaction involves Az+ ion formation via a first order reaction, subjected to 
an energy barrier of 24.8 kcal/mol (computed at M062X/6-31+g(d,p) level of 
theory). 

Ab-initio calculations on isolated GC pair performed by Vasilescu et al. [253] 
have confirmed the preferential attack at guanine N7 over the other sites. 
Thermochemical studies also confirm that alkylation of isolated GC base pair by 
sulphur or nitrogen mustard is exothermic (ΔH < 0) and spontaneous (ΔG < 0). 
Computed chemical potential (μ) and the electrophilicity (ω) clearly show that an 
electronic charge flow from the nucleophilic GC base pair to the electrophilic 
species episulfonium or aziridinium ion is involved. 

Mann [254] has performed an explicit solvent phase ab-initio molecular dynamics 
simulation to study the activation of nitrogen mustards: mustine and 
phosphoramide mustard. The simulations have predicted a concerted reaction 
occurring by means of neighbouring-group participation with the nearby 
nucleophilic tertiary nitrogen. The calculated free energy of activation for Az+ ion 
formation for mustine has been observed to be 20.4 kcal/mol which is close to the 
experimental value of 22.5 kcal/mol. These simulations also indicate a dynamic 
transition state characterized by pronounced changes in the local water structure 
within the first hydration shell. The complete mechanism involving solvent 
reorganization, ionization of the C-Cl bond and internal cyclization of the Az+ ion 
has been captured from elevated temperature simulations. Rate constants for Az+ 
ion formation from both mustine and phosphoramide mustard have been 
calculated to be 26 s and 34.6 min respectively which are in agreement with the 
experimental values [255, 256]. 

Recently, Polavarapu et al. [257] have studied the mechanism of alkylation of 
guanine and adenine by mustine, melphalan and phenyl mustard using DFT. They 
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have concluded that the rate of formation of Az+ ion of mustine is much preferred 
to the other two aromatic nitrogen mustards. The free energy of activation of Az+ 
ion formation for mustine has been calculated to be 9.26 kcal/mol which is 
smaller as compared to those of melphalan and phenyl mustard (23.00 kcal/mol 
and 22.53 kcal/mol respectively). Thus the Az+ ion formation by mustine is 
kinetically favored over the other two. They have also showed that imminium ion 
formation is thermodynamically favored but a huge amount of free energy of 
activation (46 kcal/mol) prevents its formation. The free energy barrier for 
guanine alkylation is comparable in all the cases (21.44 kcal/mol, 27.74 kcal/mol 
and 28.88 kcal/mol for mustine, phenyl mustard and melphalan respectively). 
However, in case of adenine alkylation these barriers are larger (27.79 kcal/mol, 
35.33 kcal/mol and 33.01 kcal/mol for mustine, phenyl mustard and melphalan 
respectively). This study supports earlier experimental observation that guanine 
alkylation is preferred over adenine alkylation. 

Our research group too have performed a number of studies on nitrogen mustards. 
Especially the alkylation reaction and different properties of the nitrogen mustards 
have been studied. We have made successful applications of DFT and DFRT to 
make an in-depth study on alkylation of DNA bases, reactivity of Az+ ion, and 
stability of drug-guanine adducts etc. Few examples are discussed in section 1.4. 

SOME APPLICATIONS OF DFT AND DFRT ON NITROGEN MUSTARDS 

We have studied alkylation of DNA by nitrogen mustards. The kinetic as well as 
thermodynamic driving force involved in DNA alkylation by nitrogen mustards 
have been studied extensively, clarifying many doubts. Alkylation takes place in 
cellular environment and it is an uphill task for a computational chemist to mimic 
the cellular environments. Consideration of aqueous phase is a good 
approximation to some extent. Nevertheless simple model chemistry cannot 
represent the real situation. However, DFT studies provide a better understanding 
of the factors that influence the rate of the reaction, free energy of activation, 
conformation of the drug etc. Moreover, reactivity descriptors defined under 
DFRT are extensively used to explain the reactivity pattern of the drug molecules, 
intermediates and products formed during alkylation. 
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During the alkylation process, the Az+ ion attacks guanine N7 and the positively 
charged carbon center in Az+ ion accepts electron density from guanine N7. But 
this is possible only when the LUMO is associated with the carbon centers in the 
Az+ ion. Therefore, the position as well as the energy of the LUMO of the Az+ ion 
becomes important. It has been observed that, the LUMO of the Az+ ion (i.e., with 
N3C2C160) is localized away from the tricyclic ring (30).  

 

(30) Shape of the LUMO of the Az+ ions 

Cl

N3

C2

C1

R

 

 

This position of the LUMO rules out the interaction between the Az+ ion (C atoms 
of the tricyclic ring in Az+ ion) and guanine (N7 center). Therefore, it becomes 
important to study the factors that facilitate the alkylation reaction. Let us discuss 
some of these factors based on our own research work. Most of our calculations 
have been carried out with 6-31+g(d) and 6-31++g(d,p) basis sets with Becke 
three parameter Lee, Yang and Parr correlation functionals (B3LYP) which is one 
of the most popularly used hybrid functionals. 

Case Study I: Structural Variation in Aziridinium Ion Facilitates Alkylation 

The optimized structure of the Az+ ion shows that it possesses a perfect tricyclic ring 
with N3C2C160 (30) (Please note that the N3-atom described here is referred to 
as the N-atom of Az+ ion with C1 and C2 as the other two carbon centers in the ring. 
The numbering has been done arbitrarily for the sake of simplicity and does not refer 
to any scientific nomenclature and this numbering will be used in the rest of the 
chapter). In this conformation the LUMO density is mostly confined within the 
chloroethyl side chain. During mono-adduct formation, the N3-C1 bond of the Az+ 
ion rips apart and the NCC bond angle becomes 110 (in mono-adduct). We have 
considered the mustine molecule, and an attempt has been made to analyze what 
happens when the tricyclic ring rips apart. As the NCC bond angle varies from 60 
to 120, the shape of the LUMO of the Az+ ion changes and shifts from the 
chloroethyl side chain towards the ring carbon. A small variation (5) in NCC 
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shifts the LUMO towards the ring carbon (31a) and at NCC >110 most of the 
LUMO concentrate at the C1 center (31b) [258].  

 

(a) NCC=65 

 

(b) NCC=110 

(31) Variation of the shape of the LUMO with NCC bond angle 

This study verifies that the variation of the shape of the LUMO during alkylation of 
DNA by nitrogen mustards is an important factor for the alkylation reaction to occur. 
Moreover, the two important principles, maximum hardness principle (MHP, 
according to which, maximum hardness leads to maximum stability) and minimum 
electrophilicity principle (MEP, most stable configuration possess minimum 
electrophilicity) are also obeyed during structural variation (32) and maximum 
hardness is observed in case of Az+ ion. However, as the NCC bond angle increases, 
hardness decreases, implying destabilization of the species according to MHP.  
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(32) Variation in global hardness () and electrophilicity () (in kcal/mol) of the drug 
intermediate with variation in NCC bond angle at B3LYP/6-311++g(d,p) level in gas phase. 
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Case Study II: Affinity of Aziridinium Ions Towards Different Nucleophiles 

Apart from the DNA base pairs, there are plenty of nucleophilic centers present in 
cellular environment that compete with the base pairs to interact with the Az+ ion and 
may interrupt DNA alkylation. So keeping this in mind, we have analyzed the 
affinity of Az+ ion towards different nucleophiles using DFT and DFRT [259]. 
Interaction energy of the Az+ ion towards different nucleophilic centers is one of the 
key factors in determining how strongly the Az+ ion may get diverted from its target 
molecule (DNA bases). Two groups of nucleophiles are chosen for this purpose: one 
bearing negative charges, (group I) and the other with neutral nucleophilic centers 
(group II). BSSE (basis set superposition error) corrected interaction energies at 
different level of theories in gas and aqueous phases are shown in Table 1. 

Table 1: Interaction energy (in kcal/mol) of different nucleophiles with Az+ ion at three different 
levels of theory in gas and aqueous phases 

 In gas phase In aqueous phase 

B3LYP/6-
31++g(d,p) 

B3LYP/Aug-
cc-pVDZ 

B3LYP/6-
311++g(d,p) 

B3LYP/6-
31++g(d,p) 

B3LYP/Aug-
cc-pVDZ 

B3LYP/6-
311++g(d,p) 

Group I nucleophiles 

Cl- -125.89 -126.20 -126.65 -4.51 -4.75 -7.00 

2NH - -198.42 -197.84 -198.87 -78.42 -77.38 -73.08 

NHMe- -200.60 -200.09 -200.83 -85.27 -82.85 -80.91 

NMe2
- -197.18 -195.67 -197.11 -87.48 -85.68 -85.05 

OH- -180.75 -180.65 -181.17 -52.61 -51.98 -49.81 

OMe- -177.16 -176.98 -177.29 -58.30 -57.11 -56.82 

SH- -146.63 -146.33 -147.40 -32.57 -31.96 -24.56 

SMe- -155.65 -154.75 -156.13 -39.16 -38.44 -20.24 

MeCOO- -141.20 -141.52 -141.33 -26.34 -26.40 -40.59 

HCOO- -137.15 -137.43 -137.45 -34.30 -34.30 -30.81 

Group II nucleophiles 

MeCOOMe -0.45 -0.84 0.02 9.02 8.04 8.38 

NH3 -12.27 -12.37 -12.58 -23.09 -23.94 -19.39 

NHMe2 -24.56 -24.67 -24.80 -24.02 -24.10 -22.85 

NMe3 -26.28 -26.18 -26.43 -20.87 -20.60 -22.68 

OC(NH2)2 -41.58 -44.56 -40.93 -36.31 -37.05 -27.03 

OCHNH2 -22.35 -21.98 -21.77 -22.75 -23.37 -15.34 

OCMe2 -2.02 -1.60 -1.57 6.80 6.78 1.57 
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Table 1: contd… 

OCMeNH2 -26.34 -25.70 -24.69 -21.39 -21.37 -15.69 

SHMe -0.96 -0.49 -0.49 -1.71 -1.31 -1.70 

SMe2 -13.04 -12.35 -12.57 -7.24 -6.83 -8.39 

In case of group I nucleophiles, interaction energies in gas phase are found to be 
comparatively higher than in aqueous phase. Presence of charges on the 
nucleophiles as well as on the Az+ ion makes them stable in aqueous phase. Thus, 
it becomes easier for these species to remain in unreacted form in aqueous phase. 
In aqueous phase, the nucleophiles (group I) bearing N-centers exhibit the highest 
interaction energies whereas Cl¯ ion shows the lowest. The order of interaction 
energies among the group I nucleophiles is found to be: N˗center > O˗center > 
S˗center > Cl¯, with an exception in case of O-center in carboxylic group, which 
shows low interaction energy due to delocalization of the charge over the –COO¯ 
group. Higher affinity of the nucleophiles with N-centers suggests that Az+ ion is 
more prone to attack at different N-centers (preferentially at tertiary N-centers) 
present in DNA, RNA and in different protein molecules. Exceptionally low 
affinity of Cl- ions towards the Az+ ion explains why nitrogen mustards form Az+ 
ion by releasing Cl¯ ion. The Az+ ion exhibits a weak interaction with the group II 
nucleophiles, both in gas as well as in solvent phases. Some of them even show 
repulsive interaction (positive interaction energy). We have not observed any 
sharp variation in the values of the interaction energies on moving from gas to 
aqueous phase for group II nucleophiles. Nucleophiles with N-centers show 
strong interactions in both phases, whereas an exactly opposite case has been 
observed in case of nucleophiles with S-centers. 

Interaction of the Az+ ion and the nucleophiles resulted in a strong covalent bond 
formation; shorter (and hence stronger) bond formation has been observed in case 
of group I nucleophiles (especially with those having N-centers) compared to the 
group II nucleophiles. 

In case of group I nucleophiles, some linear relationship between the reactivity 
descriptors and interaction energies are observed, (33a-d) but no such relationship 
has been observed in case of group II nucleophiles. 
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(a) (b) 

 

(c) (d) 

(33) Variation of interaction energy with HOMO energy, global hardness, chemical potential and 
electrophilicity of group I nucleophiles at B3LYP/6-31++g(d,p) level of theory in gas and aqueous 

phases (all parameters are in kcal/mol). 

Case Study III: Effect of External Electric Field on the Reactivity of the 
Aziridinium Ion 

During its lifetime, the Az+ ion has to pass through different environments ranging 
from non-polar (within the cell membrane) to polar environments (in extra- and 
intra- cellular fluids, blood etc.) before interacting with guanine (in DNA). These 
polar environments consist of charged particles and are expected to exert some 
electric fields of different magnitude on the species. Accordingly, we studied the 
effect of external electric fields on Az+ ion of mustine and observed its behaviour 
using DFRT [260]. It has been noticed that in absence of external electric field the 
LUMO is mostly located at the chloroethyl side chain (34a). As the electric field 
is applied, the position of the LUMO shifts towards the direction of the applied 
field, and this shifting of LUMO is observed to depend on the magnitude of the 
applied field. For instance, when the applied field value is 0.10 V/Å, (34b), the 
LUMO starts shifting towards the direction of the external electric field and at a 
field value of 0.30 V/Å, a large portion of the LUMO gets shifted, (34d). At 
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higher field values, say greater than 0.50 V/Å, almost complete shifting of the 
LUMO is observed (34e-f). 

Thus, a cytoplasmic environment may shift the LUMO significantly towards the 
ring carbon which would facilitate alkylation. Hence external electric field is also 
an important factor that affects the shape and energy of the LUMO. Moreover, 
reactivity of the Az+ ion varies with the application of external electric field (35a-
b) and MHP as well as MEP are obeyed.  

  

(a) Field=0.0 V/Å (b) Field=0.10 V/Å  

  

(c) Field=0.20 V/Å  (d) Field= 0.30 V/Å  

   

(e) Field= 0.50 V/Å (f) Field= 0.60 V/Å 

(34) Shapes of LUMO in the presence of external electric field applied along z axis. 
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Case Study V: Mono- and Bis-Alkylation of DNA by Nitrogen Mustards 

It has become cumbersome in some of the cases to define the reaction possibilities 
using only the global reactivity descriptors as it is a site specific reaction; it is thus 
advisable to study the reactivity patterns of those sites using the local reactivity 
descriptors. Local parameters such as Fukui function (f+), local softness (s) and 
local philicity (ω±) are some tools handy for this purpose [262]. Here we have 
studied the formation of mono- as well as cross-linked adducts by a few nitrogen 
mustards and analyzed the local reactivity pattern. Of all the drugs chosen for the 
study i.e. mustine, melphalan, chlorambucil, phosphoramide mustard, 
bendamustine, uracil mustard and spiromustine, Az+ ion of mustine exhibits the 
highest tendency for mono-adduct formation whereas second aziridinium ion, 
(Az2+) (Scheme 1) of uracil mustard exhibits maximum tendency for cross-linked 
adduct formation. The extents of solvent effect measured in terms of free energy 
of solvation (Gsol) suggest that the extent of the effect depends upon the charge 
present on the species; free energy of solvation of Az2+ is higher than that of Az+ . 
Stability of mono- and cross-linked adducts has been measured in terms of global 
hardness which predicts a different trend in both the cases. Interaction energy 
happens to be of cardinal importance for a drug molecule. Though in gas phase, 
interaction energy in case of cross-linked adducts are much higher than in mono-
adducts; in aqueous phase they are very close to each other, Table 2. Moreover, 
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because of higher charge (+2), cross-linked adducts acquire more stability in 
aqueous phase compared to mono-adducts. 

Table 2: Interaction energies (in kcal/mol) of mono- and cross-linked adducts in gas and aqueous 
phases (within bracket) at B3LYP/6-31+g(d) level of theory 

Drug molecule Eint-mono Gsol Eint-cross Gsol 

Mustine  -46.83 (-21.11) -57.73 -62.39 (-21.43) -138.32 

Melphalan  -47.86 (-23.96) -66.48 -64.67 (-27.12) -140.58 

Chlorambucil  -48.74 (-29.41) -63.88 -61.07 (-27.49) -141.90 

Bendamustine  -43.54 (-24.37) -69.49 -60.74 (-26.73) -141.56 

Phosphoramide 
mustard 

-57.89 (-37.55) -69.79 -79.17 (-38.99) -141.76 

Uracil mustard  -55.61 (-26.94) -66.32 -71.61 (-30.14) -146.29 

Spiromustine  -51.27 (-25.72) -59.12 -68.69 (-29.40) -134.04 

Case Study VI: Alkylation of DNA Base by Formononetin Derivatives of 
Nitrogen Mustard 

Recently, we have analyzed the thermodynamic and kinetic aspects of guanine 
alkylation by nitrogen mustard derivatives of formononetin (39) using DFT [263].  

O

O

CH3

O

RO

N

Cl

Cl

 
(39) 

Free energy of activation of the Az+ ion and adduct formation by formononetin 
nitrogen mustard derivatives are comparable to those of chlorambucil and 
melphalan. Results confirm that Az+ ion formation by the nitrogen mustard 
derivatives of formononetin is quite sluggish as compared to that of mustine. 
Higher energy barrier in the drug-guanine mono-adduct formation over Az+ ion 
formation provides evidence of the later being kinetically favored. 
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Thermodynamic studies suggest that Az+ ion formation is endothermic but drug-
guanine adduct formation is exothermic. These drug molecules also exhibit 
significant interaction with guanine moiety (in DNA). It is worth mentioning that 
the results illustrate the applicability of MHP and MEP. 

CONCLUDING REMARK 

In summary, the nitrogen mustard derivatives are excellent DNA alkylator and 
have received extensive application in cancer chemotherapy over the last fifty 
years. This class of drug molecules inhibits cell growth by formation of 
interstrand cross-linking. Since its discovery, several hundreds of such molecules 
have been synthesized, and many of them are found to exhibit potent anticancer 
activity. Though the mechanism of action of these molecules has been properly 
explained, elucidation at molecular level is of utmost importance to make an 
exclusive in-depth understanding. In comparison to a large number of 
experimental studies, only a few computational studies have so far been 
performed on these drug molecules. In recent years DFT and DFRT have been 
successfully applied to understand the mechanism of DNA alkylation, effect of 
solvent on the alkylation process, stability of the chemical species involved in the 
reaction etc. In near future these kinds of studies may become helpful in 
developing new and more potent nitrogen mustards. 
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CHAPTER 5 

From Conventional Prodrugs to Prodrugs Designed by Molecular 
Orbital Methods 

Rafik Karaman* 

Bioorganic Chemistry Department, Faculty of Pharmacy Al-Quds University, 
P.O. Box 20002, Jerusalem, Palestine 

Abstract: In this chapter we attempt to present a novel prodrug approach which is 
based on enzyme models that have been advocated to understand the mechanism by 
which enzymes catalyze biochemical transformations. The tool exploited in the design 
of novel prodrugs is computational calculations using molecular orbital (MO) and 
molecular mechanics (MM) methods and correlations between experimental and 
calculated rate values for some intramolecular processes. In this approach, no enzyme is 
needed to catalyze the intraconversion of a prodrug to its active parent drug. The 
conversion rate is solely determined by the factors affecting the rate limiting step in the 
intramolecular (interconversion) process. Knowledge gained from unraveling the 
mechanisms of the studied enzyme models (cyclization of Bruice’s dicarboxylic semi-
esters and acid-catalyzed hydrolysis of Kirby’s N-alkylmaleamic acids) was exploited 
in the design. It is believed that the use of this approach might eliminate all 
disadvantages related to prodrug interconversion by the metabolic approach (enzyme 
catalyzed process). By utilizing this approach we have succeeded to design novel 
prodrugs for a number of commonly used drugs such as the anti-bleeding agent, 
tranexamic acid, the antihypertensive agent, atenolol, the pain killer agent, paracetamol, 
and the antibacterial agents, amoxicillin, cephalexin and cefuroxime. In vitro studies 
have shown that in contrast to the active drugs (atenolol, paracetamol, amoxicillin and 
cephalexin) which possess bitter sensation, the corresponding prodrugs were bitterless. 
Hence, it is expected that patient compliance especially in the pediatric and geriatric 
population will be significantly increased. 

Keywords: Ab initio calculations, DFT calculations, enzyme models, molecular 
mechanics calculations, prodrugs, prodrugs design. 

INTRODUCTION 

Drug discovery is considered as a lengthy interdisciplinary endeavor. It is a multi- 
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step process that commences with target and lead discovery, followed by lead 
optimization and in vitro and in vivo studies to evaluate if a chemical entity 
complies with a number of pre-set criteria to start clinical development. The 
number of years it takes to introduce a drug to the pharmaceutical market is 
estimated between 10-12 years with a cost of more than $0.9 billion dollars [1, 2]. 

In the past few decades the pharmaceutical industry has been subjected to 
considerable alterations in terms of improving drug drawbacks that are related to 
pharmacokinetic (pharmaceutical and biological) performance of existing drugs 
which may hinder drug development process [3-7]. Overcoming the undesirable 
physicochemical properties of a number of marketed drugs can be achieved 
through the development of new chemical entities with desirable efficacy and 
safety. However, this is an expensive and time consuming process that needs a 
screening of thousands of molecules for biological activity. Over the past two 
decades, an increased recognition that the discovery of potent therapeutics 
involving design of new entities, possess “drug-like” properties and high binding 
affinity for their biological targets, has been established. The drug-like properties 
consist of solubility, permeation across barriers and metabolic and excretory 
clearance [3-7]. 

An adequate balance of the physicochemical properties enables a drug moiety to 
attain and maintain the required systemic concentrations for achieving therapeutic 
effects via optimum absorption, distribution, metabolism, and excretion (ADME) 
processes. A drug moiety that is poorly absorbed, rapidly metabolized or rapidly 
excreted will not have the ability to attain and provide an efficient therapeutic 
potential. Such a drug will require much higher doses to achieve sufficiently high 
systemic concentrations for efficacy, which may not be beneficial in some cases 
or may cause side effects in others. Thus, good drug-like properties are often 
defined as physicochemical properties of a drug that enable it to circulate through 
physical, biochemical, and physiological barriers imposed in the physiological 
environments. The pharmaceutical properties of a drug candidate are optimized by 
de novo design which involves selections of appropriate physicochemical 
attributes into the drug moiety or through formulation of the drug candidate with 
pharmaceutical or biochemical agents that can improve the physicochemical 
properties. Another important approach that has been used to impart good 
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pharmaceutical properties is a design of a prodrug moiety that transiently modifies 
physicochemical properties of a drug to overcome a shortcoming. Hence, it 
becomes much more feasible to modify and improve the properties of existing 
drugs through exploring the prodrug approach for eliminating the undesirable 
properties and to increase the commercial life-cycle and patentability of the 
concerned drugs. The prodrug approach is a promising and well established 
strategy for the development of new entities that possess superior efficacy, 
selectivity and reduced toxicity. Hence an optimized therapeutic outcome can be 
accomplished using this approach. Approximately, about 10% of all worldwide 
marketed medicines can be categorized as prodrugs, and in 2008 alone, about 
33% of all approved small molecular weight drugs were prodrugs, and this 
signifies the success of the prodrug approach [5-7]. 

A complete understanding of the physicochemical and biological behavior of a 
drug candidate is required when modifying the drug’s absorption, distribution, 
metabolism and elimination (ADME) properties [8-12]. This approach consists of 
comprehensive evaluation of drug-likeness involving prediction of ADME 
properties which can be accomplished using in vitro and in vivo data obtained 
from tissue or recombinant material, from humans, and pre-clinical species. In 
addition, in silico or computational predictions of in vitro or in vivo data which 
involves an evaluation of various ADME properties, using computational methods 
such as quantitative structure activity relationship (QSAR) or molecular 
modeling, are required as well [1-7]. 

Studies have shown that high attrition rates in the drug development process are 
attributed to poor pharmacokinetics and toxicity, and researchers have reached to 
the conclusion that these issues should be heavily considered as early as possible 
in the drug discovery process in order to improve the efficiency and cost 
effectiveness of the drug candidate [13]. 

Therefore, the goal is to design drugs having an efficient dissolution and 
permeability to be transferred to the blood circulation (absorption) and efficiently 
reach their target (distribution) and to be sufficient stable to survive the 
physiological journey (metabolism) and to be eliminated in a reasonable time 
(elimination). 
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In order to achieve a drug’s success in reaching the biological target the following 
drug’s physicochemical properties are required: (1) chemical stability in aqueous 
solutions, such as stomach, intestine and blood circulation environments. (2) 
Metabolic stability; the drug must survive digestive and metabolic enzymes (liver) 
and any metabolites (product of drug metabolism) should not be toxic or 
ineffective. Metabolic enzyme activity (cyctochrome P450’s) varies from 
individual to individual can be affected by other chemicals, such as grapefruit 
juice which inhibits activity; cigarette smoke and brussel sprouts which enhance 
it; other drugs may inhibit or promote P450 enzymes. For example, antibiotics can 
act as P450 inhibitors; slows the metabolism of other drugs by these enzymes. 
Phenobarbitone stimulates the P450 enzymes; accelerating the metabolism of 
warfarin (anticoagulant) and making it less effective. Cimetidine (antihistamine) 
inhibits the P450 enzymes; slowing the metabolism of warfarin (anticoagulant). 
St. John’s wort (herbal medicine for mild to moderate depression) promotes P450 
enzymes; decreasing the effectiveness of contraceptives and warfarin. 
Anticoagulants are bound by plasma protein in the blood, but aspirin displaces 
them, which can lead to a drug overdose, and (3) Successful absorption; diffusion 
across membrane (solubility and permeability; size, H-bonding). Too hydrophilic 
drugs can’t cross membranes; more easily excreted by kidneys and too 
hydrophobic drugs have poor water solubility, poorly absorbed from GI tract 
because they coagulate in fatty globules [3-4]. 

PRODRUG OVERVIEW 

The prodrug term involves chemically modified inert compound which upon 
administration releases the active parent drug to elicit its therapeutic activity 
within the body. Since few decades, prodrug strategy has increasingly being 
developed to overcome undesired drug physicochemical properties. Generally, 
prodrugs consist of a promoiety that is removed by enzymatic or chemical 
reactions, while other prodrugs release their active drugs after molecular 
modification such as an oxidation or reduction reactions. In some cases, two 
active drugs can be attached together in a single molecule called a codrug. In a 
codrug, each drug acts as a linker for the other. It is important to ensure that the 
prodrug should be pharmacologically inactive, rapidly converted to its active drug 
and a non-toxic moiety [14, 15]. Nearly 55 years ago, Albert introduced the 
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prodrug term for the first time in his book ‘selective toxicity’. The first prodrug 
was not originally designed as a prodrug, but its nature was determined later. 
Earlier examples of compounds fulfill the classical criteria of prodrug were 
acetanilide and phenacetin, which exhibit their activities after being metabolized 
within the body [16]. Acetanilide is an antipyretic agent that entered the clinical 
use in 1886. It undergoes metabolism (aromatic hydroxylation) to paracetamol, in 
a similar manner to that of phenacetin which produces paracetamol via O-
dealkylation [17]. 

In the late nineteenth century a chemist, Felix Hoffman at Bayar-Company, 
synthesized the antipyretic agent Aspirin (acetylsalicylic acid), which was 
introduced for the first time in clinical practice in 1899; it can be considered a less 
corrosive prodrug form of salicylic acid to minimize the gastric irritation and 
ulcerogenicity associated with salicylic acid. However, it remains a matter of 
debate whether aspirin is a true prodrug or not [18]. Since then many prodrugs 
were synthesized to overcome many pharmaceutical and pharmacokinetic 
problems such as, low bioavailability by increasing or decreasing lipophilicity of 
the parent drug, site selectivity for higher absorption and less toxicity, short 
duration of action to increase patient compliance, rapid metabolism to increase 
oral bioavailability and masking bitter sensation of commonly used drugs, which 
is crucial for geriatric and pediatric patient compliance. 

Prodrug design is an efficient approach used to overcome these problems. The 
lipophilicity of poorly permeable drugs can be increased by linking the drug to a 
lipophilic linker such that it can be used for oral, ocular or local drug delivery. 
Prodrugs can be also used to increase aqueous solubility by linking the drug to 
polar or ionizable groups. In addition, prodrugs use has succeeded to overcome 
site selectivity problems, which can be achieved by targeting a specific enzyme or 
receptor, such as targeting an enzyme that is over expressed in tumor cells. 
Further, mAbs have been used as ligands to transport prodrugs to tumor cells. 
They are designed as drug-antibody conjugate or antibody enzyme conjugate [19], 
targeting membrane transporters is utilized in order to increase absorption such as 
in the case of valacyclovir prodrug. Several prodrugs have been used to prolong 
duration of action, such as buprenorphine decanoate and fluphenazine decanoate 
ester prodrugs [20]. Prodrugs of naltrexone, nalbuphine, estradiol and dopamine 
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are another example of prodrugs to increase bioavailability of drugs that are 
susceptible to presystemic metabolism, by protecting the groups involved in 
metabolism [21]. An example for dopamine prodrug to increase bioavailability is 
shown in Fig. 1. Prodrugs also are applied to decrease pain at injection site by 
making drugs more water soluble. Masking bitter taste and improvement of odor 
are important applications of prodrugs to increase patient compliance. Taste 
masking is achieved by blocking chemical groups that are involved in the drug 
interaction with bitter taste receptors.  

 

Figure 1: Chemical structures of docarpamine [N-(N-acetyl-L-methionyl)-O, O-bis 
(ethoxycarbonyl) dopamine), a pseudopeptide prodrug of dopamine and dopamine. 

INTRAMOLECULAR PROCESSES USED FOR THE DESIGN OF 
POTENTIAL PRODRUGS 

Most of the prodrugs that are in clinical use require enzymatic catalysis in order to 
interconvert into their corresponding parent drugs; they are typically esters of 
drugs containing carboxyl or hydroxyl groups, which are readily interconverted 
by esterase catalyzed hydrolysis [22]. However, applying enzymatic activation as 
mentioned before suffers many disadvantages such as high chemical reactivity 
that precludes either liquid or solid formulation of the prodrug or low chemical 
reactivity, resulting in low in vivo concentration level of the active drug. 
Therefore, the development of prodrugs through non-enzymatic pathways has 
emerged as an alternative approach in which prodrug activation is not affected by 
inter- and intra-individual variability that has consequences on the enzymatic 
activity. In particular, cyclization-activated prodrugs have been capturing the 
attention of medicinal chemists since more than two decades. 

Many different strategies have been exploited in recent years for the development 
of intramoleculary-activated prodrugs using the cyclization pathways that control 
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the rate of the drug release from its corresponding prodrug. These strategies 
include: (1) cyclization reactions that release the active drug as the cyclization 
product, (2) cyclization reactions involving elimination of the parent drug and (3) 
cyclization reactions which preced by an enzymatic reaction that generates the 
internal nucleophile (also called two-step activation). A number of reviews 
addressing these approaches have previously been published by Shan et al. [23], 
Testa & Mayer [24] Wang et al. [25], Vinšová and Imramovský [26] and Stella 
[27]. Another interesting review on anticancer prodrugs selectively activated by 
elimination and cyclization reactions was published by Papot et al. [28] in 2002. 

Additionally, a chapter on cyclization-elimination strategies for prodrug activation 
has recently published [29]. 

Another example of intramolecular process that has been utilized for prodrug 
development is the “conformation lock” (trimethyl lock system). Borchardt and 
co-workers developed two-step activation prodrugs by carriing out covalent 
attachment of model drugs to the carboxyl group of the hydrocinnamic acid 
moiety while masking the o-hydroxyl substituent as a precursor structure sensitive 
to either reductases [30-32], esterases [33-35] or phosphatases [36]. 
Consequently, the o-hydroxyl group could be released in a first enzymatically-
promoted transformation, after which fast lactonization would lead to drug release 
(Fig. 2). 

In 1985, Bundgaard and co-workers proposed pilocarpine prodrugs based on 
pilocarpic acid double esters [37].The latter were shown to work as prodrugs of 
pilocarpine both in vitro and in vivo and, in aqueous solution, to undergo a 
quantitative and apparently specific-base-catalyzed lactonization to pilocarpine. 
This process was based on an initial ester hydrolysis step that leaves a hydroxyl 
nucleophile free to attack the benzyl ester moiety, thus promoting the final 
cyclization-elimination reaction [37]. 

Molecular modeling studies of a series of pilocarpic acid mono- and diester 
prodrugs by Konschim et al. have been done to gain an understanding of their 
general physicochemical properties. Molecular structures and conformers have 
been determined with molecular mechanics and quantum chemical AM1 
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calculations [38]. However, no rate calculation has been done to calculate 
(predict) the effect of the structural features on the drug’s release. 

 

Figure 2: An illustration of the “trimethyl lock” concept used for the design of two-step prodrugs. 

In this chapter, a novel prodrug approach, by which the intraconversion of a 
prodrug to its parent drug is determined only on the structure features of the linker 
(promoiety), discussed implies prodrugs design based on enzyme models that 
have been advocated to understand how enzymes work. The tool used in the 
design is computational approach consisting of calculations using a variety of 
different molecular orbital such as DFT and ab initio, and molecular mechanics 
methods and correlations between experimental and calculated rate values 
(activation energy) for some intramolecular processes that were utilized to 
understand the mechanism/s by which enzymes exert their high catalytic 
effeciency. In this approach, there is no need to enzyme catalysis of the intra-
conversion of a prodrug to its active drug. The release rate of the active drug is 
solely determined by the factors affecting the rate limiting step of the prodrug 
intraconversion process. Knowledge gained from the mechanisms of the 
previously studied enzyme models was used in the design. 

It should be worth noting that the use of this approach might eliminate all 
disadvantages that are associated with prodrug interconversion by enzymes. The 
bioconversion of prodrugs is perhaps the most vulnerable link in the chain, 
because there are many intrinsic and extrinsic factors that can affect the process. 
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For example, the activity of many prodrug activating enzymes may be varied due 
to genetic polymorphisms, age-related physiological changes, or drug interactions, 
leading to adverse pharmacokinetic, pharmacodynamic, and clinical effects. In 
addition, there are wide interspecies variations in both the expression and function 
of the major enzyme systems activating prodrugs, and these can pose some 
obstacles in the preclinical optimization phase. 

ENZYME MODELS USED IN THE PRODRUG DESIGN 

Over the past few decades, pioneer studies by several organic chemists and 
biochemists, such as Bruice, Bender, Jencks, Menger, Kirby and Walesh, have 
contributed much for understanding how enzymes catalyze biochemical reactions 
[39-52]. 

The consensus today is that the principal of enzyme’s catalysis is based on both, 
the catalysis by functional groups and the ability to reroute intermolecular 
reactions through alternative pathways by which substrates can bind to 
preorganized active sites. Moreover, studies have demonstrated that rates 
enhancement by enzymes can be driven by a number of factors: (1) covalently 
enforced proximity, such as in the case of chymotrypsin, (2) non-covalently 
enforced proximity, as seen in the catalysis of metalloenzymes, (3) covalently 
enforced strain, and (4) non-covalently enforced strain, which has been researched 
on models that mimic the lysozyme enzyme. 

In general, rates of enzymatic reactions are more than 1010-1018 -fold the 
corresponding non-enzymatic bimolecular counterparts. For example, catalyzed 
reactions by orotidine monophosphate decarboxylase are enhanced by 1017-fold 
whereas that catalyzed by cyclophilin are accelerated by105-fold. The huge rates 
enhancement brought about by enzymes is as a result of the substrate binding 
within the confines of the enzyme’s active site. The binding energy of the 
resulting enzyme substrate complex is the main driving force to catalysis. It is 
assumed that in all enzyme catalyzed biotransformation, binding energy is used to 
overcome physical and thermodynamic factors imposing barriers to the reaction 
(free energy) such as: (i) the change in entropy, in the form of the freedom of 
motions of the reactants in solution; (ii) the hydrogen bonding around 
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biomolecules in aqueous solution; (iii) a proper alignment of catalytic functional 
groups on the enzyme and (iv) the distortion of a substrate that must occur before 
the reaction commences [39-53]. 

The extraordinary high efficiency of enzymes depends on a combination of few 
factors that have been recognized but none of them was fully understood. Despite 
the growing progress reached in understanding enzyme catalysis a number of 
important factors still to be investigated. The high rates of intramolecular 
reactions are fascinating for chemists because they are reminiscent of the 
efficiency of enzyme catalysis and it is widely believed that a common source is, 
at least for a significant part, responsible both effects. The similarity between 
intramolecularity and enzymes has encouraged a number of chemists and 
biochemists to design chemical models based on intramolecular reactions 
involving two reactive centers in order to reveal the mode and mechanism of 
enzymes catalysis. Over the past 50 years suggestions have been proposed from 
attempts to interpret changes in reactivity versus structural variations in 
intramolecular systems. Among those proposals: (1) Koshland ‘‘orbital steering’’ 
which suggests a rapid intramolecularity arises from a severe angular dependence 
of organic reactions as has been shown in the lactonization of hydroxy acids [44]; 
(2) ‘‘proximity’’ in intramolecular processes (near attack conformation) model as 
advocated by Bruice and demonstrated in the lactonization of di-carboxylic acids 
semi-esters[45-47]; (3) ‘‘stereopopulation control’’ based on the concept of 
freezing a molecule into a productive rotamer as presented by Cohen [48-50], (4) 
Menger’s ‘‘spatiotemporal hypothesis’’ which postulates that the rate of reaction 
between two reactive centers is proportional to the time that the two centers reside 
within a critical distance [51-55] and (5) Kirby’s proton transfer models on the 
acid-catalyzed hydrolysis of acetals and N-alkylmaleamic acids which 
demonstrated the importance of hydrogen bonding formation in the products and 
transition states leading to them [56-64]. 

Studies on intramolecularity have played a fundamental role in elucidating the 
chemistry of the groups involved in enzyme catalysis as well as in unraveling the 
mechanisms available for particular processes. Thus, it is believed that these 
studies have the potential to provide an adequate understanding of how efficiency 
depends on structure in intramolecular catalysis which in turns could shed light on 
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related problems in enzyme catalysis, and could be potentially used as prodrugs 
linkers. 

COMPUTATIONAL METHODS BACKGROUND 

The use of computational chemistry for geometries and energies of ground and 
transition states calculations has become a daily tool for organic, bioorganic and 
medicinal chemists alike. Computer science principles are utilized to aid in 
solving chemical problems by incorporating theoretical chemistry results into 
efficient computer programs to calculate the geometries and physical and 
chemical properties of molecules [65]. 

Kinetics and thermodynamics calculations for biological systems having 
pharmaceutical and medicinal interests are considered a challenge to the health 
community. Computational calculations utilizing quantum mechanics (QM) such as 
ab initio, semi-empirical and density functional theory (DFT) methods, and molecular 
mechanics (MM) methods are increasingly being used and broadly accepted as 
reliable tools for the prediction of potential drugs and prodrugs alike [65]. 

The above mentioned computational methods can handle both static and dynamic 
situations. In all cases the computer time, memory and disk space increase 
drastically with the studied system’s size. Ab initio methods generally are useful 
only for small systems. They are based entirely on theory from first principles. 
The ab initio molecular orbital methods (QM) such as HF, G1, G2, G2MP2, MP2, 
MP3 and MP4 are based on rigorous use of the Schrödinger equation with a 
number of approximations. Ab initio electronic structure methods have the 
advantage that they can be made to converge to the exact solution, when all 
approximations are sufficiently small in magnitude and when the finite set of 
basis functions tends toward the limit of a complete set. The convergence, 
however, is usually not monotonic, and sometimes the smallest calculation gives 
the best result for some properties. The disadvantage of ab initio methods is their 
time-consuming cost [66-67]. 

Other less accurate methods are the semi-empirical because they make many 
approximations and obtain some parameters from empirical data. The semi-
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empirical quantum chemistry methods are based on the Hartree-Fock formalism 
and they are very important in computational chemistry for treating large 
molecules where the full Hartree-Fock method without the approximations is too 
expensive. Within the framework of Hartree-Fock calculations, some pieces of 
information (such as two-electron integrals) are sometimes approximated or 
completely omitted. In order to correct for the loss of two-electron integrals, semi-
empirical methods are parameterized, that is their results are fitted by a set of 
parameters, normally in such a way as to produce results that best agree with 
experimental data, but sometimes to agree with ab initio results. Semi-empirical 
calculations are much faster than their ab initio counterparts. Their results, 
however, can be very wrong if the molecule being computed is not close enough 
to the molecules in the database used to parameterize the method. The most used 
semiempirical methods are MINDO, MNDO, MINDO/3, AM1, PM3 and SAM1 
[68-71]. Calculations of molecules exceeding 70 atoms can be done using such 
methods (the number of atoms to be calculated is dependent on the computer 
efficiency used). 

Another commonly used quantum mechanical method in chemistry and physics to 
study the electronic structure, especially the ground state of many- systems, in 
particular atoms, molecules, and the condensed phases is the density functional 
theory (DFT). With this theory, the properties of many systems can be predicted 
by using functionals, i.e. functions of another function, which in this case is the 
spatially dependent electron density. Hence the name density functional theory 
comes from the use of functionals of the electron density. DFT is among the most 
common methods available in condensed-matter physics, computational physics, 
and computational chemistry. The DFT method is used to calculate geometries 
and energies for medium-sized systems (up to 60 atoms depending on the basis set 
used) of biological and pharmaceutical interest and is not restricted to the second 
row of the periodic table [72-74]. 

On the other hand, molecular mechanics is a mathematical approach used for the 
computation of structures, energy, dipole moment, and other physical properties. It is 
widely used in calculating many diverse biological and chemical systems such as 
proteins, large crystal structures, and relatively large solvated systems. However, this 
method is limited by the determination of parameters such as the large number of 
unique torsion angles present in structurally diverse molecules [75]. 
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Quantum mechanics methods are important tool to investigate functional 
mechanisms of biological macromolecules based on their 3D and electronic 
structures. The system size which ab initio calculations can handle is relatively 
small despite the large sizes of biomacromolecules surrounding solvent water 
molecules. Accordingly, isolated models of areas of proteins such as active sites 
have been studied in ab initio calculations. However, the disregarded proteins and 
solvent surrounding the catalytic centers have also been shown to contribute to the 
regulation of electronic structures and geometries of the regions of interest. 

To overcome these discrepancies combined quantum-mechanics/molecular-
mechanics (QM/MM) approaches have become the method of choice for 
modeling reactions in biomolecular systems. Quantum-mechanical (QM) methods 
are required for calculating chemical and other electronic processes, such as 
charge transfer or electronic excitation. However, QM methods are restricted to 
systems of up to a limited number of atoms. However, the size and 
conformational complexity of biopolymers needs methods capable of treating up 
to several 100,000 atoms and allowing for simulations over time scales of tens of 
nanoseconds. This is achieved by highly efficient, force-field-based molecular 
mechanics (MM) methods. Thus to model large biomolecules the ideal approach 
to be used is a combination of the two methods and to use a QM method for the 
chemically active site and MM treatment for the surroundings. The resulting 
techniques are called combined or hybrid QM/MM methods. They enable the 
modeling of reactive biomolecular systems at a reasonable computational time 
while providing a reasonable accuracy. The pioneer work of the QM/MM method 
was accomplished by Warshel and Levitt, and since then, there has been much 
progress on the development of a QM/MM algorithm and applications to 
biological systems [76-78]. 

CALCULATION METHODS USED FOR EXPLORING THE ENZYME 
MODELS MECHANISMS AND FOR PRODRUGS DESIGN 

The MM2 molecular mechanics strain energy calculations were done using 
Allinger’s MM2 program [75]. The Becke three-parameter, hybrid functional 
combined with the Lee, Yang, and Parr correlation functional, denoted B3LYP, 
were employed in the calculations using density functional theory (DFT). All 
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calculations were carried out using the quantum chemical package Gaussian 03 
and Gaussian 09 [79]. Calculations were carried out based on the restricted 
Hartree-Fock method. The starting geometries of all calculated molecules were 
obtained using the Argus Lab program [80] and were initially optimized at the 
HF/6-31G level of theory, followed by optimization at the B3LYP/6-31G(d,p) and 
B3LYP/6-311+G(d,p) levels. Total geometry optimizations included all internal 
rotations. Second derivatives were estimated for all 3N-6 geometrical parameters 
during optimization. An energy minimum (a stable compound or a reactive 
intermediate) has no negative vibrational force constant. A transition state is a 
saddle point which has only one negative vibrational force constant [81]. The 
“reaction coordinate method” [82] was used to calculate the activation energy in 
the studied processes. Transition states were located first by the normal reaction 
coordinate method [82] where the enthalpy change was monitored by stepwise 
changing the interatomic distance between two specific atoms (0.1 Å). The 
geometry at the highest point on the energy profile was re-optimized by using the 
energy gradient method at the B3LYP/6-31G(d,p) or B3LYP/6-311+G(d,p) level 
of theory. The activation energy values were calculated from the difference in 
energies of the global minimum structures (GM) and the derived transition states. 
The transition state structures were verified by their only one negative frequency. 

The activation energies obtained from the DFT for all molecules were calculated 
with and without the inclusion of water. The calculations with the incorporation of 
water were performed using the integral equation formalism model of the 
Polarizable Continuum Model (PCM) [83-86]. In this model the cavity is created 
via a series of overlapping spheres. The radii type employed was the United Atom 
Topological Model on radii optimized for the PBE0/6-31G(d) level of theory. In 
this chapter, the mechanisms of some enzyme models that have been advocated to 
understand enzyme catalysis were computationally investigated. The tool used in 
the study is computational approach consisting of calculations using a variety of 
different molecular orbital and molecular mechanics methods and correlations 
between experimental and calculated reactions rates [87-105].  

BRUICE’S ENZYME MODEL BASED ON RING-CLOSING OF DI- 
CARBOXYLIC SEMI-ESTERS [95] 

Bruice and Pandit have studied the hydrolysis of di-carboxylic semi-esters 1-6 
shown in Fig. 3 and found that the relative rate (krel) 6>5>4>3>2>1. They 
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attributed the enhancement in rates to proximity orientation. Using the 
observation that alkyl substitution on succinic acid influences rotamer 
distributions, the ratio between the reactive gauche and the unreactive anti-
conformations, they proposed that gem-dialkyl substitution increases the 
probability of the resultant rotamer adopting the more reactive conformation. 
Therefore, for cyclization to occur, the two reacting centers must be in the gauche 
conformation. In the unsubstituted reactant, the reactive centers are almost 
completely in the anti-conformation for minimizing steric interactions [45-47]. 

 

Figure 3: Chemical structures for di-carboxylic semi-esters 1-6. 

Menger and Bruice ascribed the phenomenon of rate accelerations in some 
intramolecular processes to the importance of the proximity of the nucleophile to 
the electrophile of the ground state molecules [45-47, 51-55]. Menger in his 
“spatiotemporal” hypothesis developed an equation relating activation energy to 
distance and based on this equation, he concluded that enormous rate 
enhancements in reactions catalyzed by enzymes are achieved by imposing short 
distances between the reactive centers of the substrate and enzyme [51-55]. On 
the other hand, Bruice attributed the catalysis by enzymes to favorable ‘near 
attack conformations’. According to Bruice’s hypothesis, systems that have a high 
quota of near attack conformers will have a higher reaction rate and vice versa. 
[45-47]. In contrast to the proximity proposal, others believe that high rate 
acceleration in intramolecular processes is due to relief of the reactants strain 
energy [106]. To examine whether the discrepancy in ring-closing rates of di-
carboxylic semi-esters 1-6 is due to proximity orientation or to strain effects, we 
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have calculated, using DFT method at B3LYP/6-31G(d,p) and HF/6-31G(d,p) 
levels, the ground state, intermediate and transition state structures as well as the 
activation energy values for processes 1-6. The DFT optimized geometries for the 
global minimum (GM) and transition state structures (TS) for systems 1-4 and 6 
are shown in Figs. 4 and 5, respectively. In accordance with Bruice’s results [45-
47] we have found that the cyclization reaction proceeds by one mechanism, by 
which the rate-limiting step is the tetrahedral intermediate collapse and not its 
formation (Fig. 6). However, contrarily to Bruice’s conclusion we have found that 
the acceleration in rate is due to strain effect rather than to proximity orientation 
stemming from the “rotamer effect” (for further information, see Table 1. 

 

  

Figure 4: DFT at B3LYP/6-31G(d,p) level optimized structures for the global minimum (GM) in 
di-carboxylic semi-esters 1-4 and 6. 



From Conventional Prodrugs to Prodrugs Designed Frontiers in Computational Chemistry, Vol. 2   203 

 

Figure 5: DFT at B3LYP/6-31G(d,p) level optimized structures for the transition state (TS) in di-
carboxylic semi-esters 1-4 and 6. 

 

Figure 6: Proposed mechanism for the cyclization of di-carboxylic semi-esters 1-6. 
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To test whether the discrepancy in the reactions rates of 1-6 (Fig. 3) stems from 
proximity orientation or due to steric effects, Allinger’s MM2 strain energy values 
[75] for the reactants and intermediates in systems 1-4 and 6 were calculated and 
their values were correlated with the experimental relative rate (log krel) values 
[45-47] (see Table 1). The correlation results demonstrated strong correlation 
between the two parameters. Attempts to correlate the distance between the two 
reacting centers (rGM) and log krel failed to give any linearity between the two 
parameters. This suggests that the driving force for the acceleration in the ring-
closing processes is driven by strain energy and not by Bruice’s “near attack 
rotamer” [45-47]. Further support to this conclusion was obtained by a strong 
correlation found between the activation energy values (ΔG‡

H2Oand ΔG‡
GP) for 1-

4 and 6 with both log krel and the MM2 strain energy values, ΔEs (TS - AN). 

Table 1: DFT calculated properties for the cyclization reactions of 1-4 and 6 

System 
log krel 

[45-47] 

(exp.) 
ESINT-GM 

(MM2 calc.)
∆G‡ (GP) 

B3L 
∆G‡ (H2O)

B3L 
rGM 
B3L 

∆G‡ (GP) 
B3L311 

∆G‡ (H2O)
B3L311 

1 3.00 8.70 19.09 29.37 4.24 9.26 20.33 

2 3.30 9.30 12.22 21.10 4.34 13.13 22.03 

3 5.26 8.07 12.83 16.13 4.31 10.27 13.98 

4 5.36 4.24 1.43 9.03 4.08 2.76 12.54 

6 7.90 2.31 10.48 16.51 2.37 ------ ------ 
log krel is the experimental relative rate [45-47]. ∆G‡ is the activation free energy (kcal/mol). rGM is the distance between the 
nucleophile (O1) and the electrophile (C6) in the reactant. B3L and B3L311 refer to calculated by B3LYP/6-31G(d,p) and 
B3LYP/6-311+G(d,p), respectively. GP and H2O refer to calculated in the gas phase and water, respectively. 

The salient points emerged from this computational study are (1) the activation 
energy in 1-6 is dependent on the difference in the strain energies of the transition 
states and the reactants, and there is no relationship between the cyclization rate 
and the distance between the nucleophile (O-) and the electrophile (C). (2) The 
observation of opening the cyclic ring during the reaction rate limiting step 
supports the notion that the difference in the strain energies of the reactant and the 
transition states plays a crucial role in the discrepancy in the rates of cyclization 
of the di-carboxylic semi-esters 1-6. (3) Strained reactants such as 6 are more 
reactive than the less strained reactants, and the reactivity extent is linearly 
correlated with the strain energy difference between the transition state and the 
reactant (ΔEs). (4) The energy needed to provide a stable transition state for a 
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strained system is less than that for the unstrained system, since the 
conformational change from the reactant to the transition state in the former is 
smaller [105]. 

COMPUTATIONALYY DESIGNED PRODRUGS BASED ON BRUICE’S 
ENZYME MODEL - THE ANTIMALARIAL AGENT ATOVAQUONE 
(ATQ) 

Malaria-like febrile illnesses have been described since Hippocrates as fevers that 
were periodic and associated with marshes and swamps. The word “malaria” 
comes from the Italian “mal’aria” for “bad airs.” It was not until 1880s that 
scientists were able to identify the malaria parasite and link the transmission of 
malaria to mosquitoes. Malaria is transmitted to humans via the bite of infected 
female mosquito of anopheles species [107]. Malaria can exist, in a mild form that 
most commonly associated with flu-like symptoms; fever, vomiting, and general 
malaise. While in the sever form caused by P. falciparum, a nervous, respiratory 
and renal complications frequently coexist due to serious organ failure [108]. In 
severe cases it can progress to coma or death. Malaria commences with a bite 
from an infected female Anopheles mosquito, which brings the protists via saliva 
into the circulatory system. In the blood circulation, the protists are transferred to 
the liver to be matured and reproduced. 

The disease is a global public health problem, affecting 40% of the population and 
causes about 2 million deaths per year [109]. Most of disease cases are found in 
the poorest countries; tropical Africa, Latin America, Southern Asia and Oceania 
[110]. A more concern is being given now to malaria even in countries where 
there is a low risk of infection; this is due to the phenomena of global warming 
which is significantly increasing [111]. World Health Organization (WHO) 
assesses that 81% of cases and 91% of deaths are found in African regions. 
Children under 5-years old and pregnant women are the most severely affected. 
This protozoan disease is caused by 5 parasites species of the genus Plasmodium 
that affect humans (P. falciparum, P. vivax, P. ovale, P. malariae and  
P. knowlesi) [107]. The only one among these parasites that can cause life 
threatening complications is P. falciparum [110], which is dominated in Africa 
and to which most drug-resistant cases are attributed. 



206   Frontiers in Computational Chemistry, Vol. 2 Rafik Karaman 

Several medications, alone or in combination such as chloroquine, antifolates, 
artemisinins and others show effectiveness and were considered as being the 
corner stone in malaria treatment. However, drug or multi-drug resistance to these 
agents has been escalated and constitutes a major challenge in malaria treatment 
[108]. Accordingly, the need for new antimalarial drugs is now widely 
recognized, particularly those that are structurally different from existing 
antimalarial drugs and possess a novel mechanism of action. Atovaquone, a 
hydroxynaphthoquinone, is relatively new treatment option, active against 
Plasmodium spp. It has a novel mechanism of action, acts by inhibition of the 
electron transport system at the level of cytochrome bc1 complex. In malaria 
parasites, the mitochondria act as a sink for the electrons generated from 
dihydrorotate dehydrogenase; an essential enzyme for pyrimidine biosynthesis; 
Inhibition of electron transport by ATQ leads to dihydrorotate dehydrogenase 
inhibition resulting in reduced pyrimidine biosynthesis and thus parasite 
replication inhibition. It is well established that atovaquone has an excellent safety 
profile and long half-life, besides it can be administered via oral route. However, 
atovaquone has poor oral bioavailability (less than 10% under fasted condition) 
and variable oral absorption due to its poor solubility that results from its 
lipophilic structure. Consequently, this results in low and variable plasma and 
intracellular levels of the drug which is an important determinant of therapeutic 
outcome [112-115]. 

The prodrug approach has the potential to be the most successful among other 
approaches to overcome this shortcoming. Continuing our study on design and 
synthesis of atovaquone prodrugs [112], the study herein was to design 
atovaquone prodrugs through linking atovaquone to a di-carboxylic semiester 
linker (Bruice’s enzyme model) to produce a system that is more hydrophilic than 
its parent drug and is able to release the active drug in a chemically driven 
controlled manner without any activation by enzyme. Thus, introducing novel 
atovaquone prodrugs that fulfill the following requirements: (1) enhanced water 
solubility; (2) improved oral bioavailability; (3) controlled release rate; (4) 
predicted plasma levels and (5) improved antiparasitic activity. Based on our 
calculations that enabled us to unravel the mechanism for the ring-closing reaction 
of Bruice’s dicarboxylic semiesters [45-47] and to assign the factors determining 
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the reaction rate we have designed five different atovaquone prodrugs with the 
potential to have better water solubility than their parent drug and to release the 
active parent drug in a controlled manner (Fig. 7). 

Calculation of the Effective Molarity (EM) and Relative Rate, Log krel, for 
Atovaquone Prodrugs, ATQ ProD 1-ProD 5 

The measure generally used for intramolecular efficiency is the effective molarity 
(EM). The EM parameter is defined as kintra/kinter for corresponding intramolecular 
and intermolecular processes driven by identical mechanisms. The factors 
determining the EM value are ring size, solvent and reaction type. Cyclization 
reactions via intramolecular nucleophilic addition are much more efficient than 
intramolecular proton transfers. Values in the order of 109-1013 M have been 
measured for the effective molarity in intramolecular processes occurring through 
nucleophilic addition. Whereas for proton transfer processes values of less than 10 
M were obtained. The effective molarity parameter is considered an excellent tool 
to describe the efficiency of a certain intramolecular Process [56-64, 116]. 

The experimental relative rates for the intramolecular cyclization of 1-6 (Fig. 3) 
were obtained from the division of the intramolecular rate and the corresponding 
intermolecular reaction. For obtaining the relative rates (effective molarity, EM) 
for processes ATQ ProD 1- ProD 5 we assume that their corresponding 
intermolecular process is similar to that for systems 1-6. 

Since an excellent correlation was obtained between the activation free energy 
values (∆G‡) for 1-6 and ATQ ProD 1- ProD 5 and the difference in the strain 
energy values of the reactants and intermediates, ΔEs(INT-GM), the calculated values of 
ΔEs(INT-GM) for ATQ ProD 1-ProD 5 were used to calculate their corresponding 
relative rates (EM and log krel). The calculated EM values for ATQ ProD 1-ProD 5 
were 6.96, 6.47, 3.78, 6.50 and -12.82, respectively. These values demonstrate that 
ATQ ProD 1 and ATQ ProD 4 are the most efficient processes among all systems 
studied and the least efficient are ATQ ProD 3 and ATQ ProD 5. 

Using the experimental t1/2 (the time needed for the conversion of 50% of the 
reactants to products) value for the cyclization reaction of di-carboxylic semiester 
1 and the calculated log krel values for prodrugs ATQ ProD 1-ProD 5 we have 
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calculated the t1/2 values for the conversion of ATQ ProD 1- ProD 5 to their 
parent drug. The calculated t1/2 values were: ATQ ProD 3, 22.44 hours; ATQ 
ProD 1, ATQ ProD 2 and ATQ ProD 4, few seconds and ATQ ProD 5 few 
years. Therefore, the intraconversion rates of atovaquone prodrugs to atovaquone 
can be programmed according to the nature of the prodrug linker. 

 

Figure 7: Chemical structures for atovaquone prodrugs ATQ ProD 1- ProD 5. 
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BITTERLESS PARACETAMOL PRODRUGS BASED ON BRUICE’S 
ENZYME MODEL 

The palatability of active drugs is a significant obstacle in developing a patient 
convenient dosage form. Organoleptic properties, such as taste, are an important 
factor when selecting a drug from the generic products available in the market 
having the same active ingredient. It is a key issue for doctors and pharmacists to 
assure an adequate drug’s taste upon administration of drugs particularly to the 
pediatric and geriatric populations [117]. 

Organic and inorganic molecules dissolve in saliva and bind to taste receptors on the 
tongue to give a bitter, sweet, salty, sour, or umami sensation. Bitter taste is sensed 
by the receptors on the posterior part of the tongue. The sensation is a result of signal 
transduction from taste receptors located in areas known as taste buds. The taste 
buds contain very sensitive nerve endings, which are responsible for the production 
and transmission of electrical impulses via cranial nerves VII, IX, and X to certain 
areas in the brain that are devoted to the perception of taste [118]. Molecules with 
bitter taste [119-123] are very diverse in their chemical structure and 
physicochemical properties [124, 125]. In humans, bitter taste perception is mediated 
by 25 G-protein coupled receptors of the hTAS2R gene family. Drugs such as 
macrolide antibiotics, non-steroidal anti-inflammatory and penicillin derivatives 
have a pronounced bitter taste [126]. Masking the taste of water soluble bitter drugs, 
especially those given in high doses, is difficult to achieve by using sweeteners 
alone. Consequently, several approaches have been studied and have resulted in the 
development of more efficient techniques for masking the bitter taste of molecules. 
There are various techniques available which are commonly used for masking drug’s 
bitterness: (1) taste masking with flavors, sweeteners, and amino acids [127]; (2) 
taste masking with lipophilic vehicles such as lipids, lecithin, and lecithin- like 
substances[128]; (3) coating which is classified based on the type of coating 
material, coating solvent system, and the number of coating layers [129]; (4) 
microencapsulation based on the principle of solvent extraction or evaporation [130]; 
(5) sweeteners are generally used in combination with other taste masking 
technologies [131]; (6) taste suppressants and potentiators, such as Linguagen’s 
bitter blockers (e.g. adenosine monophosphate), are used for masking the bitter taste 
of various compounds by competing with binding to the G-protein coupled receptor 
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sites (GPCR) [132]; (7) resins are utilized to mask pharmaceuticals bitterness by 
forming insoluble resonates [133, 134]; (8) inclusion complex by which the drug 
molecule fits into the cavity of a complexing agent and forms a stable complex that 
masks the drug bitterness by decreasing its oral solubility [135]; (9) pH modifiers are 
capable of generating a specific pH microenvironment in aqueous media that has the 
ability to facilitate in situ precipitation of the bitter drug compound in saliva thus 
reducing the overall taste sensation for liquid dosage forms [136]; (10) adsorbates; 
the compound may be adsorbed or entrapped in the matrix of the adsorbate pore, 
which may result in a delayed release of the bitter tastant during passage through the 
oral cavity and thus masking the taste [137] and (11) the prodrug approach by which 
a functional group/s binds to the bitter taste receptor is blocked by a promoiety. All 
of the developed techniques are based on the physical modification of the 
formulation containing the bitter tastant. Although these approaches have helped to 
improve the taste of some drugs formulations, the problem of drug bitterness in 
pediatric and geriatric formulations still creates a serious challenge to the health 
community. Thus, different strategies should be developed in order to overcome this 
serious problem. Bitter tastant molecules interact with taste receptors on the tongue 
to give bitter sensation. Altering the ability of the drug to interact with its bitter taste 
receptors could reduce or eliminate its bitterness. This could be achieved by an 
appropriate modification of the structure and the size of the bitter compound. Bitter 
molecules bind to the G-protein coupled receptor-type T2R on the apical membrane 
of the taste receptor cells located in the taste buds. In humans, about 25 different 
T2R’s are described. Additionally, several alleles are known and about 1000 
different bitter phenotypes exist in human beings [120-126]. Due to the large 
variation of structural features of bitter taste molecules; it is difficult to generalize 
the molecular requirements for bitterness. Nevertheless, it was reported that a bitter 
tastant molecule requires a polar group and a hydrophobic moiety. A QSAR model 
was developed and has been established for the prediction of bitterness of several 
tastant analogues. For example, it was reported that the addition of a pyridinium 
moiety to an amino acid chain of a variety of bitter amino acid compounds decreases 
bitterness, such as in the case of glycine. Other structural modifications, such as an 
increase in the number of amino groups/residues to more than 3 and a reduction in 
the polyhydroxyl group/ COOH, have been proven to decrease bitter sensation. 
Moreover, changing the configuration of a bitter tastant molecule by making isomer 
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analogues was found to be important for binding affinity to enhance bitterness 
agonist activity (e.g. L-tryptophan is bitter while D-tryptophan is sweet) [138]. 

Paracetamol is an odorless, bitter crystalline compound used as an over the 
counter analgesic and antipyretic drug. Paracetamol is used to relief minor aches. 
It is used as pain killer by decreasing the synthesis of prostaglandin due to 
inhibition of cyclooxygenases (COX-1 and COX-2) [139]. Paracetamol is favored 
over aspirin as pain killer in patients who have excessive gastric secretion or 
prolonged bleeding [139]. It was approved to be used as fever reducer in all ages. 
Pharmacokinetic studies have shown that urine of patients who had taken 
phenacetin contained paracetamol. Later was demonstrated that paracetamol was a 
urinary metabolite of acetanilide [139]. Phenacetin is known historically to be one 
of the first non-opioid analgesics lacking or has a very slight bitter taste [139]. 
Comparison of the structures of paracetamol and phenacetin shows close 
similarity between both analgesics except of the nature of the group on the para 
position of the benzene ring. While in paracetamol the group is hydroxyl, in 
phenacetin it is ethoxy. On the other hand, acetanilide has a chemical structure 
similar to that of paracetamol and phenacetin but it lacks any group at the para 
position of the benzene ring. Acetanilide lacks the bitter taste characteristic for 
paracetamol [139]. The comparisons of the three compounds suggest that the 
presence of hydroxy group on the para position of the benzene ring plays a major 
role in the bitter sensation resulted from administering paracetamol. Therefore, it 
is expected that masking the hydroxyl group in paracetamol with a suitable linker 
might inhibit the binding of paracetamol to its bitter taste receptor/s and hence 
masking its bitterness. It is likely that paracetamol binds to the active site of its 
bitter taste receptor via hydrogen bonding interactions by which its phenolic 
hydroxyl group is engaged. It is worth noting, that linking paracetamol with 
Bruice’s enzyme model linker via its phenolic hydroxyl group might hinder 
paracetamol bitter taste. 

Based on the DFT calculations on the cyclization of Bruice’s 1-6 (Fig. 3), two 

paracetamol prodrugs were proposed (Fig. 8). As shown in Fig. 8, the paracetamol 

prodrugs, ProD 1-2, have a carboxylic acid group as a hydrophilic moiety and the 

rest of the prodrug, as a lipophilic moiety, where the combination of both groups 
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provides a moderate HLB. It should be noted that the HLB value is determined 

upon the pH of the physiologic environment by which the prodrug is dissolved. 

For example, in the stomach, the paracetamol prodrugs will primarily exist in the 

carboxylic acid form whereas in the blood circulation the carboxylate form will be 

dominant. Since Bruice’s cyclization reaction occurs in basic medium 

paracetamol ProD 1-2 were obtained as carboxylic free acid form, since this form 

is expected to be stable in acidic medium such as the stomach. 

 

Figure 8: Hydrolysis of paracetamol ProD 1 and paracetamol ProD 2. 

IN VITRO INTRA-CONVERSION OF PARACETAMOL PROD 1-PROD 2 
TO THEIR ACTIVE DRUG, PARACETAMOL 

The hydrolysis of paracetamol ProD 1-ProD 2 was studied in four different 

media; 1N HCl and buffers pH 3, pH 6.6 and pH 7.4. The prodrug hydrolysis was 

monitored using HPLC analysis. At constant pH and temperature the release of 

paracetamol from its prodrug was followed and showed a first order kinetics. kobs 

(h-1) and t1/2 values for the intraconversion of paracetamol ProD 1-ProD 2 was 

calculated from regression equation obtained from the plot of log concentration of 

residual of paracetamol ProD 1 vs. time. The kinetics results in the different 

media are summarized in Table 2 and Fig. 9. 
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Table 2: The observed k value and t1/2 of paracetamol ProD 1-ProD 2 In 1N HCl and buffers pH 3 
and 7.4 

Medium 
ProD1 

kobs (h
-1) 

ProD2 
kobs (h

-1) 
ProD1 
t½ (h) 

ProD2 
t½ (h) 

1N HCl No reaction No reaction No reaction No reaction 

Buffer pH 3 6.3 x 10-5 ------- 3 Very fast 

Buffer pH 7.4 6.1 x 10-4 ---------- 0.3 Very fast 

As shown in Table 2 the hydrolysis rate of paracetamol ProD 1 at pH 7.4 was the 
fastest among all media, followed by pH 3 medium. In 1N HCl no conversion of the 
prodrug to the parent dug was observed. The discrepancy in the behavior between 
the two prodrugs is due to the fact that the strain energy of maleic anhydride is 
higher than that of succinic anhydride. It should be emphasized that the reaction rate 
in these processes is determined on the strain energy of the system. 

 

Figure 9: First order hydrolysis plot of paracetamol ProD 1 in (a) buffer pH 3and (b) buffer pH 7.4. 

At pH 7.4, paracetamol ProD 1-ProD 2 are mainly exist as the carboxylate anion 
form which is expected to undergo fast hydrolysis according to Bruice’s 
mechanism shown in Fig. 3. At pH 3, the prodrug exists in both form, the 
carboxylate anion and the carboxylic free acid forms since the pKa of the prodrug 
is about 3. In 1N HCl, the prodrug is entirely exists as the carboxylic free acid 
form and since only the carboxylate anion form undergoes Bruice’s cyclization. 
The hydrolysis rate in 1N HCl is almost negligible or zero. 



214   Frontiers in Computational Chemistry, Vol. 2 Rafik Karaman 

KIRBY’S ENZYME MODEL BASED ON THE ACID-CATALYZED 
HYDROLYSIS OF N-ALKYLMALEAMIC ACIDS [58, 93, 140-145]. 

Proton transfer reactions which are typically acid- or base-catalyzed reactions are 
the most common reactions that enzymes catalyze. Examples of biotransformation 
processes for such catalysis are the proton transfers catalyzed by triose phosphate 
isomerase (kcat = 53,000 s-1) and Δ5-3-ketosteroid isomerase (kcat = 8300 s-1) 
which involve weakly basic and acid groups to achieve such magnificent rates. 
The fact that reactions of substrate bound in an enzyme active site are between 
functional groups held in a close proximity encouraged scientists to utilize 
intramolecularity in modeling the extremely high efficiency of enzymes. Both, 
enzymes and intramolecularity are similar in that the reacting centers are held 
together, non-covalently with the former, and covalently with the latter. The 
significant high efficiency of enzymes catalysis depends on a combination of 
some factors that most of them have been recognized but none of them was fully 
understood. Although the devoted research to the chemistry of enzyme catalysis is 
growing rapidly a number of crucial factors remain to be investigated [151-164]. 
Kirby et al. have researched the mechanism of the acid catalyzed hydrolysis of N-
alkylmaleamic acids 7-15 to their corresponding maleamic acids and amines  
(Fig. 10). The study found that the reaction is remarkably sensitive to the pattern 
of substitution on the carbon-carbon double bond. In addition, it revealed that the 
rates of hydrolysis of the studied dialkyl-N-methylmaleamic acids range over 
more than ten powers of ten, and the “effective concentration” of the carboxy-
group of the most reactive amide, dimethyl-N-n-propylmaleamic acid, is greater 
than 1010 M. This acid amide was found to be converted into the more stable 
dimethylmaleic anhydride with a half-life of less than one second at 39 ˚C below 
pH 3 [58]. In addition, Kirby’s study demonstrated that the amide bond cleavage 
is due to intramolecular nucleophilic catalysis by the adjacent carboxylic acid 
group. Furthermore, based on the fact that the tetrahedral intermediate 
isomaleimide was converted quantitatively into N-methylmaleamic acid (Fig. 11), 
Kirby suggested that the rate-limiting step is the dissociation of the tetrahedral 
intermediate [58]. Later on Kluger and Chin researched the intramolecular 
hydrolysis mechanism of a series of N-alkylmaleamic acids derived from aliphatic 
amines having a wide range of basicity [146]. Their study revealed that the 
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identity of the rate-limiting step is a function of both the basicity of the leaving 
group and the acidity of the solution. In 1990, Katagi has computationally studied 
the reaction mechanism using AM1 semiempirical method and based on his study 
he concluded that the rate- limiting step is the formation of the tetrahedral 
intermediate and not its dissociation [147]. For further exploring the factor 
playing dominant role in proton transfer processes we have computationally 
studied Kirby’s intramolecular acid catalyzed hydrolysis of (4-amino- 4-oxo-2-
butenoic) acids (N- alkylmaleamic acids) 7-15.  

 

Figure 10: Chemical structures for N-alkylmalic acids 7-15. 

The aims of our computational work were to: (i) investigate whether the rate-
limiting step in 7-15 is the formation or the collapse of the tetrahedral 
intermediate, and to unravel the nature of the driving force(s) responsible for the 
extremely high rates determined for the acid catalyzed hydrolysis of 8 and 11, (ii) 
assign the structural factors associated with high reactivity in the hydrolysis, in 
the expectation that similar factor will be operative in enzyme catalysis. 

 

Figure 11: Conversion of isomaleimide to N-methylmaleamic acid. 
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Using DFT calculation methods at B3LYP/6-31G(d,p), B3LYP/6-311+G(d,p) 
levels and hybrid GGA (MPW1k) we have computed the acid catalyzed 
hydrolysis of maleamic (4-amino-4-oxo-2-butenoic) acids (Kirby’s N-
alkylmaleamic acids) 7-15 (Fig. 10) and the calculation results confirmed that the 
reaction proceeds in three steps: (a) a proton transfer from the carboxylic group to 
the adjacent amide carbonyl carbon followed by, (b) nucleophilic attack of the 
carboxylate anion onto the protonated carbonyl carbon and (c) dissociation of the 
tetrahedral intermediate to provide products (Fig. 12). In addition, the calculation 
results demonstrate that the rate-limiting step is dependent on the reaction 
medium. When the calculations were run in the gas phase the rate-limiting step 
was the formation of the tetrahedral intermediate, whereas when they were 
conducted in the presence of water the dissociation of the tetrahedral intermediate 
was the rate-limiting step (see Tables 3 and 4). Further, when the leaving group 
(CH3NH2) in 7-15 was replaced with a group having a low pKa value the rate-
limiting step was the formation of the tetrahedral intermediate, such as in the case 
where CH3NH2 was replaced with CF3NH2 (see Fig. 12 and Tables 3 and 4). 

 

Figure 12: Proposed mechanism for the hydrolysis of N-alkylmaleamic acids 7-15. 
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Table 3: DFT (B3LYP) calculated kinetic and thermodynamic properties in the gas phase for the 
acid catalyzed hydrolysis of 7-15 

System 
∆HBGP

‡ 

(kcal/mol) 
TΔSDGP

‡ 

(kcal/mol) 
∆GDGP

‡ 

(kcal/mol)
∆HFGP

‡ 

(kcal/mol)
TΔSFGP

‡ 

(kcal/mol)
∆GFGP

‡ 

(kcal/mol)
∆GBEth

‡ 

(kcal/mol)
∆GFEth

‡ 

(kcal/mol) 

∆GBGP
‡ 

(kcal/mol)
In high pH

7 27.31 -0.77 28.08 32.46 -1.09 33.53 34.27 31.35 45.55 

8 13.93 -2.49 16.42 25.67 -1.41 27.08 16.32 21.29 33.59 

9 24.41 -0.49 24.90 30.68 -1.89 32.57 29.53 28.23 44.68 

10 34.42 -2.35 36.77 41.88 -3.49 45.37 40.23 39.27 53.5 

11 13.25 -4.16 17.41 24.55 -2.32 26.87 18.51 22.34 34.52 

12 23.83 -0.09 23.92 30.11 -2.01 32.12 29.53 27.50 45.72 

13 24.86 -0.17 25.03 30.76 -1.54 32.30 28.35 27.76 ------ 

14 24.08 -0.89 24.87 29.79 -2.58 32.37 29.76 28.20 ------ 

15 17.88 0.64 17.24 24.17 -1.77 25.94 24.46 18.69 ------ 
B3LYP refers to values calculated by B3LYP/6-31G(d, p) method. ∆H‡ is the calculated activation enthalpic energy 
(kcal/mol). TΔS‡ is the calculated activation entropic energy (kcal/mol). ∆G‡ is the calculated activation free energy 
(kcal/mol). D and F refer to tetrahedral intermediate dissociation and tetrahedral intermediate formation. GP and Eth refer 
to calculated in the gas phase and in ether, respectively. 

Table 4: DFT (B3LYP/6-31G(d,p)) calculated kinetic and thermodynamic properties for the acid 
catalyzed hydrolysis of 7-15 

System
∆HDW

‡ 

(kcal/mol)
∆GDW

‡ 

(kcal/mol)
log krel

[58] 

log EM 
(Exp) [56]

log 
EM 

(Calc)

Es (INT2)
(kcal/mol)

Es (P) 
(kcal/mol)

Es (GM)
(kcal/mol)

∆GFW
‡ 

(kcal/mol)

Exp ∆G‡ 

[58] 

(kcal/mol)

1 32.29 33.06 0 7.724 8.52 20.55 25.08 10.16 26.10 23.70 

2 17.56 20.05 4.371 15.86 18.08 16.16 18.93 10.82 17.90 17.30 

3 27.93 28.42 1.494 7.742 11.93 17.32 21.70 9.40 24.80 21.14 

4 35.76 38.11 -4.377 1.255 4.81 27.89 32.75 12.30 32.16 30.70 

5 18.96 23.12 2.732 15.190 15.82 19.25 23.13 9.18 17.89 19.75 

6 27.19 27.28 1.516 6.962 12.76 17.59 22.95 5.12 23.87 ------ 

7 27.38 27.55 1.648 8.568 12.57 18.55 24.00 6.20 24.40 ------ 

8 29.23 30.12 ------ ------ 6.36 22.34 27.77 12.86 23.66  

9 15.79 15.15 ------ ------ 21.68 26.92 35.64 28.29 11.97  
B3LYP refers to values calculated by B3LYP/6-31G(d, p) method. ∆H‡ is the calculated activation enthalpic energy (kcal/mol). 
TΔS‡ is the calculated activation entropic energy (kcal/mol). ∆G‡ is the calculated activation free energy (kcal/mol). Es refers to 
strain energy calculated by Allinger’s MM2 method [75]. INT2 and P refer to intermediate 2 and product, respectively. EM =  
e -(∆G‡inter - ∆G‡intra)/RT. DW and FW refer to tetrahedral intermediate dissociation and tetrahedral intermediate formation calculated in 
water, respectively. Exp Refers to experimental value. Calc refers to calculated DFT values. 

The calculations demonstrated that the efficiency of the intramolecular acid-
catalyzed hydrolysis by the carboxyl group is remarkably sensitive to the pattern 
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of substitution on the carbon-carbon double bond. The rate of hydrolysis was 
found to be linearly correlated with the strain energy of the tetrahedral 
intermediate or the product. Systems having strained tetrahedral intermediates or 
products were found to be with low rates and vice versa [58, 93,140-145]. 

COMPUTATIONALLY DESIGNED PRODRUGS BASED ON 
INTRAMOLECULAR ACID-CATALYZED HYDROLYSIS OF KIRBY’S 
N-ALKYLMALEAMIC ACIDS - TRANEXAMIC ACID PRODRUGS 

Tranexamic acid is a synthetic lysine amino acid derivative. It was originally 
developed to prevent and reduce excessive hemorrhage in hemophilia patients and 
reduce the need for replacement therapy during and following tooth extraction. It 
is often prescribed for excessive bleeding. The mechanism by which tranexamic 
acid exerts its antifibrinolytic activity is by competitively inhibits the activation of 
plasminogen to plasmin, a molecule responsible for the degradation of fibrin. 
Tranexamic acid has roughly 8 times the antifibrinolytic activity of an older 
analogue, ε-aminocaproic acid. Over the past few years, the use of tranexamic 
acid has been expanding beyond the small number of hemophilia patients; it is an 
important agent in decreasing mortality rate due to bleeding in trauma patients; 
this can be seen from CRASH-2 study which concludes that all causes to 
mortality, relative risk and relative death due to bleeding were reduced with 
tranexamic acid group more than placebo group. It can be used safely in women 
whom undergo lower segment cesarean section, in this operation it was found that 
tranexamic acid reduces the blood loss during and after surgery, and it is 
pharmacologically active in reducing intra-operative using of blood heart surgery, 
hip and knee replacement surgery and liver transplant surgery. Recently, a new 
oral formulation of tranexamic acid was shown to be safe and effective for 
treatment of heavy menstrual bleeding. Oral administration of tranexamic acid 
results in a 45% oral bioavailability. The total oral dose recommended in women 
with heavy menstrual bleeding was two 650 mg tablets three times daily for 5 
days. Accumulation following multiple dosing was reported to be minimal. Post-
partum hemorrhage is a leading cause of maternal mortality, accounting for about 
100000 maternal deaths every year. Medications used to control postpartum 
hemorrhage (PPH) are in the category of uterotonic drugs. These drugs stimulate 
contraction of the uterine muscle, helping to control PPH. The two medications 
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most commonly used for treatment include oxytocin or misoprostol. In addition, 
patients are commonly given an IV blood transfusion in cases of severe 
hemorrhage. In third world countries, availability of blood and fluid replacement 
may be an issue. One approach to decrease the risk of maternal hemorrhage may 
be to improve the availability of blood and fluid replacement. An alternative 
approach is to decrease the likelihood of maternal hemorrhage. Furthermore, all 
the treatment options mentioned above are intended for intravenous 
administration; this may not be a viable option in under-developed countries. 
Therefore, a cheaper oral alternative may be better suited for such circumstances. 
Tranexamic acid can be used safely and effectively to reduce bleeding resulting 
from caesarian section (CS). After the withdrawing of aprotinin from worldwide 
market in November 2009, tranexamic acid is the only marketed antifibrinolytic 
agent available in the market. Further, it was found that tranexamic acid is also 
effective in inhibiting the activity of urokinase in urine and it is safe and effective 
for treating severe hematuria in patient with chronic renal impairment that poorly 
respond to conventional therapy. 

Recent studies have showed that tranexamic acid inhibits the ultraviolet radiation 
induced pigmentation activity, thus it can be used as bleaching agents. Oral 
tranexamic acid dosage form was found to be effective and safe in treating malesma, 
a hypermelanosis disease that occurs in Asian women. Since tranexamic acid is an 
amino acid derivative and undergoes ionization in physiologic environments its oral 
bioavailability is expected to be low due to inefficient absorption through 
membranes. Note the log P (partition coefficient) for tranexamic acid is -1.6. Hence, 
there is a necessity to design and synthesis relatively more lipophilic tranexamic acid 
prodrugs that can provide the parent drug in a sustained release manner which might 
result in better clinical outcome, more convenient dosing regimens and potentially 
fewer side effects than the original medication. Pharmacologically inactive chemical 
derivatives that could be used to alter the physicochemical properties of tranexamic 
acid, in a temporary manner and to increase its usefulness should be lipophilic 
linkers that are covalently linked to the parent drug and can be converted in vivo to 
the active drug molecule, enzymatically or no enzymatically, to exert a therapeutic 
effect. Ideally, the prodrugs should be converted to the original drug as soon as the 
goal is achieved, followed by the subsequent rapid elimination of the released 
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derivatizing group. For example, tranexamic acid is given by continuous IV infusion 
resulting in peak plasma concentration following administration. If a slow release 
prodrug can be prepared, then Cmax related side effects may be avoided and longer 
duration exposure may be achieved resulting in potentially better maintenance 
paradigm. Improvement of tranexamic acid pharmacokinetic properties and hence its 
effectiveness may increase the absorption of the drug via a variety of administration 
routes, especially the oral and SC injection routes [148-153]. 

 

Figure 13: Acid-catalyzed hydrolysis of tranexamic acid prodrugs ProD 1 -ProD 4. 

Based on DFT calculations for the acid-catalyzed hydrolysis of several N-
alkylmaleamic acid derivatives (Fig. 10) four tranexamic acid prodrugs were 
designed (Fig. 13). The DFT results on the acid catalyzed hydrolysis revealed that 
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the reaction rate-limiting step is determined on the nature of the amine leaving 
group. When the amine leaving group was a primary amine or tranexamic acid 
moiety, the tetrahedral intermediate collapse was the rate-limiting step, whereas in 
the cases by which the amine leaving group was aciclovir or cefuroxime the rate-
limiting step was the tetrahedral intermediate formation. The DFT optimized 
global minimum, intermediate and transition state structures are illustrated in 
Figs. 14, 15 and 16, respectively. Based on the DFT calculated rates the predicted 
t1/2 (a time needed for 50% of the prodrug to be converted into drug) values for 
tranexamic acid prodrugs ProD 1- ProD 4 (Fig. 13) at pH 2 were 556 hours, 253 
hours, 70 seconds and 1.7 hours, respectively (for correlation of experimental vs. 
calculated values, see Fig. 17). 

 

Figure 14: DFT optimized structures for the global minimum (GM) in tranexamic acid ProD 1- 
ProD 4. 
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Figure 15: DFT optimized structures for the tetrahedral intermediate (INT) in tranexamic acid 
ProD 1- ProD 4. 

The kinetic study for the acid-catalyzed hydrolysis of tranexamic acid ProD 1 was 
carried out in aqueous buffer in the same manner as that done by Kirby on Kirby’s 
enzyme model 7-15. This is in order to explore whether the prodrug hydrolyzes in 
aqueous medium and to what extent or not, suggesting the fate of the prodrug in the 
system. Acid-catalyzed hydrolysis kinetics for the synthesized tranexamic acid ProD  
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Figure 16: DFT optimized structures for the tetrahedral intermediate dissociation step (TSd) in 
tranexamic acid ProD 1- ProD 4. 

1 was studied in four different aqueous media: 1 N HCl, buffer pH 2, buffer pH 5 
and buffer pH 7.4. Under the experimental conditions the target compounds 
hydrolyzed to release the parent drug (Fig. 18) as evident by HPLC analysis. At 
constant pH and temperature the reaction displayed strict first order kinetics as the 
kobs was fairly constant and a straight plot was obtained on plotting log concentration 
of residual prodrug verves time. The rate constant (kobs) and the corresponding half- 
 



22

Fi
en
3.
(E
ex

liv
fr
pr
pH
pH
2 
th
in
hy

24   Frontiers in

igure 17: (a) 
nergy of the te
. (b) Plot of ac
EsINT) for proc
xperimental eff

ves (t1/2) for 
rom the linea
rodrug verse
H 5 were sel
H as of stom
and increase

he beginning
nterconversio
ydrolysis of 

n Computational

Plot of activat
etrahedral inter
cid-catalyzed h
cesses 7-13. (
fective molarit

tranexamic a
ar regression
es time. The 
lected to exam

mach, because
es up to 5 fo

g small intest
on of the tes
the tranexam

l Chemistry, Vol

tion energy for
rmediate (EsINT

hydrolysis exp
c) Plot of the
y (EMexp) for s

acid prodrug
n equation co

kinetic data 
mine the inte
e the mean fa
llowing inge
tine pathway
sted prodrug
mic acid Pro

l. 2

r tetrahedral in
T) in systems 7
erimental rate 

e DFT calcula
systems 7-13.

g ProD 1 in th
orrelating the

are listed in
erconversion
asting stoma
estion of food
y. Finally, pH
g in blood c
D 1 was fou

ntermediate di
7-13 and tranex
(log krel) vs. i

ated effective 

the different m
e log concen
n Table 5. Th
n of the trane
ach pH of adu
d. In addition
H 7.4 was se
circulation sy
und to be hig

Raf

issociation ∆G
xamic acid Pro
intermediate st
molarity (EM

media were 
ntration of th
he 1N HCl, 

examic acid p
ult is approxi
n, buffer pH
elected to ex
ystem. Acid-
gher in 1N H

afik Karaman 

 

Gd
‡ vs. strain 

oD 1- ProD 
train energy 

Mcalc) vs. the 

calculated 
he residual 

pH 2 and 
prodrug in 
imately 1-

H 5 mimics 
xamine the 
-catalyzed 

HCl than at 



From Conventional Prodrugs to Prodrugs Designed Frontiers in Computational Chemistry, Vol. 2   225 

pH 2 and 5 (Fig. 18). At 1N HCl the prodrug was hydrolyzed to release the parent 
drug in less than one hour. On the other hand, at pH 7.4, the prodrug was entirely 
stable and no release of the parent drug was observed. Since the pKa of tranexamic 
acid ProD 1 is in the range of 3-4, it is expected at pH 5 the anionic form of the 
prodrug will be dominant and the percentage of the free acidic form that undergoes 
the acid-catalyzed hydrolysis will be relatively low. At 1N HCl and pH 2 most of the 
prodrug will exist as the free acid form and at pH 7.4 most of the prodrug will be in 
the anionic form. Thus, the difference in rates at the different pH buffers. 

 

 

Figure 18: First order hydrolysis plot of tranexamic acid ProD 1in (a) 1N HCl, (b) buffer of pH 2 
and (c) buffer pH 5. 
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Table 5: The observed k value and t1/2 of tranexamic acid prodrug (ProD 1) In 1N HCl and at pH 
2, 5 and 7.4 

Medium kobs (h
-1) t½ (h) 

1N HCl 5.13 x 10-3 0.9 

Buffer pH 2 3.92 x 10-5 23.9 

Buffer pH 5 3.92 x 10-6 270 

Buffer pH 7.4 No reaction No reaction 

Comparison between the calculated t1/2 values (556 h) for tranexamic acid ProD 1 
to the experimental value (23.9 h) indicates that the calculated value is about 23 
times larger than the experimental. This discrepancy between the calculated and 
the experimental values might be attributed to the fact that the PCM model 
(calculations in presence of water) is not capable for handling calculations in 
acidic aqueous solvent (medium) since the dielectric constant for pH 2 aqueous 
solutions is not known. In the study calculations the value of 78.39 (dielectric 
constant for pure water) was used instead. The t1/2 experimental value at pH 5 was 
270 hours and at pH 7.4 no interconversion was observed. The lack of the reaction 
at the latter pH might be due to the fact that at this pH tranexamic acid ProD 1 
exists solely in the ionized form (pKa about 4). As mentioned before the free acid 
form is a mandatory requirement for the reaction to proceed. On the other hand, 
tranexamic acid ProD 4 has a higher pKa than tranexamic acid ProD 1 (about 6 
vs. 4). Therefore, it is expected that the interconversion rate of tranexamic acid 
ProD 4 to its parent drug, tranexamic acid, at all pHs studied will be higher (log 
EM for ProD 4 is 14.33 vs. 9.53 for ProD 1). 

Future strategy to achieve desirable tranexamic acid prodrugs capable of releasing 
tranexamic acid in a controlled manner and enhancing the parent drug 
bioavailability is: (i) synthesis of tranexamic acid ProD 4; (ii) kinetic studies (in 
vitro) of ProD 4 will be performed in at pH 6.5 (intestine) and pH 7.4 (blood 
circulation system) (iii) in vivo pharmacokinetic studies will be done in order to 
determine the bioavailability and the duration of action of the tested prodrug. 
Furthermore, based on the in vivo pharmacokinetics characteristics of tranexamic 
acid ProD 4 new prodrugs may be design and synthesized. 
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BITTERLESS ATENOLOL PRODRUGS 

Atenolol, 4-[2-hydroxy-3-[(1-methylethyl) amino] propoxy] benzene acetamide is 
a relatively polar hydrophilic compound with a log partition coefficient (octanol/ 
water) of 0.23. Lipid insoluble hydrophilic compounds such as atenolol, sotalol, 
nadolol are excreted only by the kidneys and have low brain penetration. Atenolol 
is a selective ß1-adrenoceptor antagonist, applied in the treatment of numerous 
cardiovascular disorders including: hypertension, angina, acute myocardial 
infarction, supraventricular tachycardia, ventricular tachycardia, and the 
symptoms of alcohol withdrawal via restricting certain nerve impulses, thereby 
controlling the rate and force of contraction and consequently reducing blood 
pressure in addition to its treatment of Angina Pectoris. Atenolol is marketed as 
tablets and an injectable formulation [154, 155]. Atenolol has a pKa of 9.6; it 
undergoes ionization in the stomach and intestine thus its oral bioavailability is 
low due to inefficient absorption through membranes. The bioavailability of 
atenolol is between 45% and 55% of the given dose and is not increased by 
administration of the drug in a solution form [156-158]. About 50% of 
administered atenolol is absorbed; however, most of the absorbed quantity reaches 
the systemic circulation. Atenolol peak blood levels are reached within two to 
four hours after ingestion. Differently from propranolol or metoprolol, atenolol is 
resistant to metabolism by the liver and the absorbed dose is eliminated by renal 
excretion. More than 85% of I.V. dose is excreted in urine within 24 hours 
compared to 50% for an oral dose. Only 6-16% is protein-bound resulting in 
relatively consistent plasma drug levels with about a four-fold inter-patient 
variation. The elimination half-life of atenolol is between 6 to 7 hours and there is 
no alteration of kinetic profile of a drug by chronic administration. Atenolol is one 
of the most important medicines used for prevention of several types of 
arrhythmias in childhood, but unfortunately it is still unlicensed [159]. On the 
other hand, atenolol is indicated as a first-step therapy for hypertension in elderly 
patients, who have difficulty in swallowing and, thus, tablets and capsules are 
frequently avoided. The ease of administration makes a liquid formulation an 
ideal dosage form for such patients [160]. Therefore, extemporaneous 
compounding (off label), involves preparation of an oral liquid from a pure drug 
powder is required. However, formulations compounded from tablets and pure 
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active drug suffer instability and are only stable for less than one week [142, 161, 
162]. Furthermore, atenolol bitterness is considered as a great challenge to health 
sector when used among children and geriatrics [163]. The main problem in oral 
administration of bitter drugs such as atenolol is incompliance by the patients 
[164] and this can be overcome by masking the bitterness of the drug either by 
decreasing its oral solubility on ingestion or eliminating the interaction of drug 
particles to taste buds [165]. 

Previous studies on stability of atenolol ester prodrugs for the use in transdermal 
preparations have shown that these ester derivatives are much more stable than 
the corresponding alcohol, atenolol, when they are formulated in aqueous 
solutions [166-167]. On the other hand, the only atenolol prodrug intended for 
oral dosage form use was atenolol aspirinate prodrug; it is described for 
antihypertensive therapy to reduce cardiovascular death, stroke, and myocardial 
infarction (MI), however, recent studies showed that coupling of atenolol with 
acetyl salicylic acid by means of an ester linkage did not produce efficient 
pharmacological profile, neither in vitro nor in vivo [168]. Continuing our study 
on the design and synthesis of novel prodrugs for drugs with bitter sensation, and 
medicines having low bioavailability we sought to: (1) design atenolol prodrugs 
that can be (i) formulated in aqueous solutions and maintain stability over a long 
period of time, (ii) lack bitterless and have the capability to undergo 
intraconversion in physiological environment to provide the parent active drug, 
atenolol, in a programmable manner and (2) synthesize, characterize and in vitro 
study the kinetic of the interconversion of the designed prodrugs in different 
media: 1 N HCl and at buffers of pH 2, pH 5 and pH 7.4. Our proposed atenolol 
prodrugs that were designed based on the acid-catalyzed hydrolysis reactions of 
N-alkyl maleamic acids 7-15 (Fig. 10) are depicted in Fig. 19. As illustrated in 
Fig. 19, the only difference between the proposed atenolol prodrugs and the 
parent drug, atenolol, is that the amine group in atenolol was replaced with an 
amide moiety. This chemical change is expected to increase the stability of the 
alcohol derivative (prodrug) compared to the corresponding amine alcohol, 
atenolol, due to general chemical stability for tertiary alcohols over amine 
alcohols. In addition, stability studies on atenolol ester derivatives showed the 
ester derivatives to be much more stable than their corresponding alcohols upon 
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formulating in aqueous solutions. On the other hand, kinetic study of atenolol and 
propranolol revealed that increasing the lipophilicity of the drug leads to an 
increase in the stability of its aqueous solutions. Based on that, it is expected that 
atenolol prodrugs (atenolol amide derivatives) shown in Fig. 19 will be more 
resistant to heat or/oxidation when standing in aqueous solutions. 

In similar to paracetamol, it is expected that blocking the amine group in atenolol 
with a suitable linker might inhibit the interaction between the amine group in 
atenolol and its bitter taste receptor and hence masks its bitterness. The nature of 
the bitter taste receptors with either paracetamol (via the phenolic group) or 
atenolol (via the amine group) is likely to be as a result of hydrogen or ionic 
bonding between the substrate and the receptor. 

 

Figure 19: Acid-catalyzed hydrolysis of atenolol ProD 1-ProD 2. 

As shown in Fig. 19, the proposed atenolol prodrugs, atenolol ProD 1 and 
atenolol ProD 2, have a hydroxyl and carboxylic acid groups (hydrophilic 
moiety) and the rest of the prodrug molecule is a lipophilic moiety, where the 
combination of both groups ensures a molecule with a moderate hydrophilic 
lipophilic balance (HLB). 

It is worthy to note that the HLB value of atenolol prodrug moiety will be largely 
determined on the medium (physiologic environment) by which the prodrug is 
dissolved. For instance, in the stomach (pH 1-2), atenolol prodrugs will exist in the 
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free carboxylic acid form whereas in the blood circulation (pH 7.4) the carboxylate 
anion form will be dominant. It is planned that atenolol ProD 1- ProD 2 (Fig. 19) 
will be formulated as sodium carboxylate salts since this form is expected to be 
stable in neutral aqueous medium. However, upon exposure to stomach (pH less 
than 3) the prodrugs will exist mainly as free carboxylic acid forms thus enabling the 
acid-catalyzed hydrolysis to proceed. The DFT calculations for the acid-catalyzed 
hydrolysis of atenolol ProD 1-ProD 2 demonstrated (the optimized structures for the 
global minimum and transition state structures are shown in Fig. 20) that the reaction 
rate is linearly correlated with the following: (a) the strain energy of the tetrahedral 
intermediate and product and the strain energy difference between the intermediate 
and the reactant. (b) The distance between the hydroxyl oxygen of the carboxyl 
group and the amide carbonyl carbon, and (c) the attack angle by which the approach 
step commences. Based on the experimental t1/2 (the time needed for the conversion 
of 50% of the reactants to products) and EM (effective molarity) values for 
processes 7-15 we have calculated the t1/2 values for the conversion of the two 
atenolol prodrugs to the parent drug, atenolol. The calculated t1/2 values for atenolol 
ProD 1-2 are predicted to be 65.3 hours and 11.8 minutes, respectively. Thus, the 
rate by which atenolol prodrug undergoes cleavage to release atenolol can be 
determined according to the nature of the linker of the prodrug (Kirby’s N- 
alkylmaleamic acids 7-15, Fig. 10). 

  

Figure 20: DFT optimized structures for the global minimum (GM), intermediate (INT2) and 
transition state (TS4) in atenolol ProD 1- 2. 
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Figure 21: First order hydrolysis plot of atenolol ProD 1 in (a) 1N HCl, (b) buffer pH 2 and (c) 
buffer pH 5. 

ATENOLOL PROD 1 KINETIC STUDY 

The kinetics of the acid-catalyzed hydrolysis study for atenolol ProD 1 was 
carried out in an aqueous buffer in a similar manner to that done by Kirby on N-
alkylmaleamic acids 7-15. Acid-catalyzed hydrolysis kinetics of the synthesized 
atenolol ProD 1 was studied in four different aqueous media: 1 N HCl and buffers 
pH 2, pH 5 and pH 7.4. Under the experimental conditions, the target prodrug 
(atenolol ProD 1) was hydrolyzed to release the parent drug, atenolol, (Fig. 21) as 
was evident by HPLC measurements. The reaction displayed strict first order 
kinetics as the kobs was fairly constant and a straight line was obtained from a plot 
of log concentration of residual prodrug verses time. The rate constant (kobs) and 
the corresponding half-lives (t1/2) for atenolol ProD 1 in the different media were 
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calculated from the linear regression equation correlating the log concentration of 
the residual prodrug vs. time. The kinetic data, kobs and t1/2 values, are listed in 
Table 6. Acid-catalyzed hydrolysis of the atenolol ProD 1 was found to be higher 
in 1N HCl than at pH 2 and 5 (Fig. 21). At 1N HCl the atenolol ProD 1 was 
hydrolyzed to release the parent drug in 2.53 hours. On the other hand, at pH 7.4, 
the prodrug was entirely stable and no release of the parent drug was observed. 
Since the pKa of atenolol ProD 1 carboxylic acid is in the range of 3-4, it is 
expected at pH 5 the anionic form of the prodrug will be dominant and the 
percentage of the free acidic form that undergoes the acid-catalyzed hydrolysis 
will be relatively low. At 1N HCl and pH 2 most of the prodrug will exist as the 
free acid form, whereas at pH 7.4 most of the prodrug will be in the anionic form. 
Thus, the difference in rates at the different pH buffers. 

Table 6: First order hydrolysis plot of atenolol ProD 1 in (a) 1N HCl, (b) buffer pH 2 and (c) 
buffer pH 5 

t 1/2 (hours) kobs (hours-1) Medium 

2.53 4.95 x 10 -4 1 N HCl 

3.82 2.22 x 10 -4 Buffer pH 2 

133 2.75 x 10-6 Buffer pH 5 

--------- ---------- Buffer pH 7.4 

The QM calculations at different levels demonstrated that the efficiency of 
atenolol ProD 1- ProD 2 is largely sensitive to the pattern of substitution on the 
carbon-carbon double bond and nature of the alkyl group on amide nitrogen. 

Using the correlation equation obtained from the plot of the calculated and 
experimental EM values the t1/2 values of two different atenolol prodrugs (ProD 
1- ProD 2) were estimated. 

Comparison between the calculated t1/2 values 63.2 hours) for atenolol ProD 1 to 
the experimental value (3.82 hours) indicates that while the value obtained by 
B3LYP/6-31G (d,p) is overestimated (about 17 times larger than the 
experimental) the values obtained by mpwpw91/6-31+G(d,p) were much more 
closer 6.3 hours. This discrepancy between the calculated and experimental values 
might be attributed to (1) B3LYP/6-31G(d,p) is a DFT method without dispersion 
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corrections and (2) PCM solvation model (calculations in presence of water) is 
not capable of handling calculations in acidic aqueous solvent (medium) since the 
dielectric constant for pH 2 aqueous solutions is not known. In the study, 
calculations the value of 78.39 (dielectric constant for pure water) was used 
instead. 

The t1/2 experimental value at pH 5 was 133 hours and at pH 7.4 no 
interconversion was observed. The lack of the reaction at the latter pH might be 
due to the fact that at this pH atenolol ProD 1 exists solely in the ionized form 
(pKa about 3-4). As mentioned before the free acid form is a mandatory 
requirement for the reaction to proceed. 

Future strategy to achieve more efficient atenolol prodrugs capable of increasing 
the liquid formulation stability, eliminating atenolol bitterness and releasing the 
parent drug in a programmable manner is: (a) synthesis of atenolol prodrugs 
having pKa around 6 (intestine pH) in vitro kinetics for this prodrug will be 
performed in at pH 6.5 (intestine) and pH 7.4 (blood circulation system) (iii) in 
vivo pharmacokinetic studies will be done in order to determine the bioavailability 
and the duration of action of the tested prodrug. 

BITTERLESS AMOXICILLIN AND CEPHALEXIN PRODRUGS 

Most of the antibacterial agents that are commonly used suffer unpleasant taste 
and a respected number of them are characterized with bitter taste. For example, 
amoxicillin, cephalexin and cefuroxime axetil have an extremely unpleasant and 
bitter taste which is difficult to mask. This is a particular problem in geriatric 
patients who cannot swallow whole tablets or when small doses are required. 
Even the antibacterial suspension is difficult for pediatrics to administer due to its 
better and unpleasant taste. It is widely assumed that the extremely bitter and 
unpleasant taste of these antibacterial drugs is due to the formation of 
intermolecular force/s between the drug and the active site of the bitter taste 
receptor/s. The intermolecular bond/s is/are most likely due to formation either 
via hydrogen bond or ionic bond of the amide (in cefuroxime) or amine (in 
amoxicillin and cephalexin) group to the active site of the bitter taste receptors. 
Antimicrobial agents are classified according to their specific mode of action 



234   Frontiers in Computational Chemistry, Vol. 2 Rafik Karaman 

against bacterial cell. By which these agents may interfere with cell wall 
synthesis, inhibit protein synthesis, interfere with nucleic acid synthesis or inhibit 
a metabolic pathway. They have a broad spectrum of activity against both gram-
positive and gram-negative bacteria. Among these agents: β-lactams- penicillins, 
cephalosporins, carbapenems and monobactams. They are preferred because of 
their efficacy, safety, and because their activity can be extended or restored by 
chemical manipulation. Inevitably, however, their usage has been restricted 
because of their bacterial resistance [169-170].  

AMOXICILLIN 

Amoxicillin is an oral semi-synthetic penicillin, moderate-spectrum, bacteriolytic, 
lactam antibiotic used to treat bacterial infections caused by susceptible 
microorganisms by which it is susceptible to the action by the β-lactamases. 
Amoxicillin has a bactericidal action and acts against both Gram positive and 
Gram-negative microorganisms by inhibiting the biosynthesis and repair of the 
bacterial mucopeptide wall. It is usually the drug of choice within its class 
because it is well absorbed following oral administration. Amoxicillin presents 
some outstanding advantages in comparison with other aminopenicillins, such as: 
a better absorption from the intestinal tract, better capacity for reaching effective 
concentrations at the sites of action and a more rapid capacity for penetrating the 
cellular wall of Gram-negative microorganisms. Aminopenicillins are frequently 
prescribed agents for the oral treatment of lower respiratory tract infections and 
are generally highly effective against S. pneumonia and non- β-lactamase-
producing H. influenza. Amoxicillin is mostly common antibiotics prescribed for 
children. It has high absorption after oral administration which is not altered and 
affected by the presence of food. Amoxicillin dose reaches Cmax about 2 hours 
after administration and is quickly distributed, and eliminated by excretion in 
urine (about 60%- 75%). The antibacterial effect of amoxicillin is extended by the 
presence of a benzyl ring in the side chain. Because amoxicillin is susceptible to 
degradation by β-lactamase-producing bacteria, which are resistant to a broad 
spectrum of β-lactam antibiotics, such as penicillin; for this reason, it is often 
combined with clavulanic acid, a β-lactamase inhibitor. This increases 
effectiveness by reducing its susceptibility to β-lactamase resistance. Amoxicillin 
has two ionizable groups in the physiological range (the amino group in α-
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position to the amide carbonyl group and the carboxyl group). Amoxicillin has a 
good pharmacokinetics profile with bioavailability of 95% if taken orally, its half-
life is 61.3 minutes and it is excreted by the renal and less than 30 % bio-
transformed in the liver [169-172]. 

CEPHALEXIN 

Cephalexin is a first-generation cephalosporin antibiotic, which was chosen as the 
model drug candidate to obtain dosage with improved stability, palatability and 
attractive pediatric elegance, cost effective with ease of administration. 
Cephalosporins are widely used for the treatment of skin infections because of their 
safety profile, and their wide range of activity against both gram positive and gram 
negative microorganism. Cephalexin is also used for the treatment of articular 
infections as a rational first-line treatment for cellulitis. It is a useful alternative to 
penicillins hypersensitivity, and is thought to be safe in a patient with penicillin 
allergy; but caution should always be taken, that’s because cephalexin and other 
first-generation cephalosporins are known to have a modest cross-allergy in patients 
with penicillin hypersensitivity. In addition, cephalexin is also effective and used in 
the treatment of β-hemolytic streptococcal throat infections. Cephalexin works by 
interfering with the bacteria's cell wall formation, causing it to rupture, and thus 
killing the bacteria. The compound is zwitterion; contains both a basic and an acidic 
group, the isoelectric point of cephalexin in water is approximately 4.5 to 5. 
Cephalexin has a good pharmacokinetic profile by which it is well absorbed, 80% 
excreted unchanged in urine within 6 hours of administration. Cephalexin’s half-life 
is 0.5-1.2 hours and it is excreted via the renal. It is used for the treatment of 
infections including otitis media, streptococcal pharyngitis, bone and joint infections, 
pneumonia, cellulitis and UTI [173-180]. 

IN VITRO INTRACONVERSION OF AMOXICILLIN AND CEPHALEXIN 
PRODRUGS TO THEIR PARENT DRUGS 

Based on our previously reported DFT calculations and on the experimental data 
for the acid-catalyzed hydrolysis of amide acids 7-15 (Fig. 10) [58, 93], two 
amoxicillin and cephalexin prodrugs were proposed (Figs. 22 and 23, 
respectively). As shown in Figs. 22 and 23, the antibacterial prodrugs, amoxicillin 
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ProD 1 and cephalexin ProD 1 molecules are composed of an amide acid 
promoiety, containing a carboxylic acid group (hydrophilic moiety) and the rest of 
the antibacterial prodrug molecule (a lipophilic moiety). 

 

Figure 22: Acid-catalyzed hydrolysis of amoxicillin ProD 1. 

The combination of both, the hydrophilic and lipophilic groups provides a 
prodrug entity with a potential to be with a high permeability (a moderate HLB). 
It should be emphasized, that the HLB value of the prodrug entity will be 
determined upon the pH of the target physiological environment. In the stomach 
where the pH is in the range 1-2, it is expected that prodrugs, amoxicillin ProD 1 
and cephalexin ProD 1 will be in a free carboxylic acid form (a relatively high 
hydrophobicity) whereas in the blood stream circulation where the is pH 7.4 a 
carboxylate anion (a relatively low hydrophobicity) is expected to be predominant 
form. Our strategy was to prepare amoxicillin ProD 1 and cephalexin ProD 1 as 
sodium or potassium carboxylates due to their high stability in neutral aqueous 
medium. It should be indicated that compounds 7-15 undergo a relatively fast 
hydrolysis in acidic aqueous medium whereas they are quite stable at neutral pH. 

 

Figure 23: Acid-catalyzed hydrolysis of cephalexin ProD 1. 
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The hydrolysis kinetic studies for amoxicillin ProD 1 and cephalexin ProD 1 
were carried out in aqueous buffers in the same manner to that executed by Kirby 
et al. on maleamic acids 7-15. This is to investigate whether the antibacterial 
prodrugs undergo hydrolysis in aqueous medium and to what extent or not, 
suggesting the fate of the prodrugs in the system. The kinetics for the acid-
catalyzed hydrolysis of the synthesized amoxicillin ProD 1 and cephalexin ProD 1 
were carried out in four different aqueous media: 1 N HCl and pH 2.5, pH 5 and  
pH 7.4 buffers. Under the experimental conditions the two antibacterial prodrugs 
intraconverted to release the parent drugs (Figs. 24 and 25) as was determined by 
HPLC analysis. For both amoxicillin and cephalexin prodrugs, at constant 
temperature and pH the hydrolysis reaction displayed strict first order kinetics as 
the kobs was quite constant and a straight line was obtained on plotting log 
concentration of residual prodrug verves time. The rate constant (kobs) and the 
corresponding half-lives (t1/2) for amoxicillin ProD 1and cephalexin ProD 1 in 
the different media were calculated from the linear regression equation obtained 
from the correlation of log concentration of the residual prodrug verses time. The 
kinetic data for amoxicillin ProD 1and cephalexin ProD 1 are listed in Tables 7 
and 8, respectively. Acid-catalyzed hydrolysis of both, amoxicillin ProD 1 and 
cephalexin ProD 1 was found to be much higher in 1N HCl than at pH 2.5 and 5 
(Figs. 24 and 25). At 1N HCl the t½ values for the intraconversion of amoxicillin 
ProD 1 and cephalexin ProD 1 were about 2.5 hours. On the other hand, at pH 
7.4, both prodrugs were quite stable and no release of the parent drugs was 
observed. At pH 5 the hydrolysis of both prodrugs was too slow. This is because 
the pKa of amoxicillin ProD 1 and cephalexin ProD 1 is in the range of 3-4, it is 
expected that at pH 5 the anionic form of the prodrug will be dominant and the 
percentage of the free acidic form that undergoes an acid-catalyzed hydrolysis 
will be relatively low. At 1N HCl and pH 2.5 most of the prodrug will exist as the 
free acid form and at pH 7.4 most of the prodrug will be in the anionic form. 
Thus, the discrepancy in rates at the different pH buffers. 

Table 7: The observed k value and t1/2 of amoxicillin ProD 1 in 1N HCl and at pH 2, 5 and 7.4 

t 1/2 (h) kobs (h
-1) Medium 

2.5 2.33 x 10 -4 1 N HCl 

7 9.60 x 10 -5 Buffer pH 2.5 

81 7.55 x 10-6 Buffer pH 5 

---- No reaction Buffer pH 7.4 
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Table 8: The observed k value and t1/2 of cephalexin ProD 1 in 1N HCl and at pH 2, 5 and 7.4 

t 1/2 (h) kobs (h
-1) Medium 

2.4 2.41 x 10 -4 1 N HCl 

14 4.17 x 10 -5 Buffer pH 2.5 

--- No reaction  Buffer pH 5  

--- No reaction Buffer pH 7.4 

 

Figure 24: First order hydrolysis plot of amoxicillin ProD 1 in (a) 1N HCl, (b) buffer pH 2.5 and 
(c) buffer pH 5. 

CONCLUDING REMARKS 

Our recent studies on intramolecularity have demonstrated that exploring the 
reaction mechanisms for all enzyme models mentioned in this chapter has helped  
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Figure 25: First order hydrolysis plot of cephalexin ProD 1 in (a) 1N HCl, (b) buffer pH 2.5 and 
(c) buffer pH 5. 

to determine the factors affecting the intramolecular reaction rate. Unraveling the 
mechanisms has allowed for better design of efficient chemical devices that have 
been utilized as prodrugs linkers that can be covalently attached to active drugs 
which can chemically, but not enzymatically, be converted to release the active 
drugs in a controlled manner. For example, studying the mechanism for a proton 
transfer in Kirby’s N-alkylmaleamic acids (enzyme model) was explored for the 
design of a number of prodrugs such as tranexamic acid for bleeding conditions, 
acyclovir as antiviral drug for the treatment for herpes simplex [141], atenolol for 
treating hypertension with enhanced stability and bioavailability without bitter 
sensation [142] and statins for lowering cholesterol levels in the blood [181]. In 
addition, prodrugs for masking the bitter taste of paracetamol and antibacterial 
drugs such as cefuroxime, amoxicillin and cephalexin were also designed and 
synthesized [143]. The role of the linkers in the antibacterial prodrugs is to block 
the free amine, which is responsible for the drug bitterness, and to enable the 
release of the drug in a controlled manner. Menger’s Kemp acid enzyme model 
was utilized for the design of dopamine prodrugs for the treatment for Parkinson’s 
disease [182]. Prodrugs for dimethyl fumarate for the treatment psoriasis was also 
designed, synthesized and studied [183]. Furthermore, unraveling the mechanism 
of Kirby’s acetals has led to the design and synthesis of novel prodrugs of aza-
nucleosides for the treatment for myelodysplastic syndromes [184], atovaquone 
prodrugs for the treatment for malaria [112], less bitter paracetamol prodrugs to 
be administered to children and elderly as antipyretic and pain killer [139], and 
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prodrugs of phenylephrine as decongestant [185]. In these examples, the prodrug 
moiety was linked to the hydroxyl group of the active drug such that the drug-
linker moiety (prodrug) has the potential to interconvert when exposed into 
physiological environments such as stomach, intestine, and/or blood circulation, 
with rates that are solely dependent on the structural features of the 
pharmacologically inactive promoiety (Kirby’s enzyme model). 
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CHAPTER 6 

Structural and Vibrational Investigation on a Benzoxazin 
Derivative with Potential Antibacterial Activity 
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Abstract: In this chapter, the structural and vibrational properties of 2-(4-
methylphenyl)-4H-3,1-benzoxazin-4-one were studied by using the available 
experimental infrared spectrum and the hybrid B3LYP/6-31G*and B3LYP/6-
311++G** methods. The bonds order, charge-transfers and stabilization energies for the 
compound were calculated employing the Natural Bond Orbital (NBO) analysis while 
the topological properties at the same levels of theory were calculated using the Atoms 
in Molecules theory (AIM). Furthermore, the frontier molecular HOMO and LUMO 
orbitals for the compound were also computed and later the values were compared with 
those reported for 2-(4-chlorophenyl)-4H-3,1-benzoxazin-4-one and 2-phenyl-4H-3,1-
benzoxazin-4-one. On the other hand, the harmonic vibrational frequencies at the same 
levels of theory were calculated using the optimized geometries of the compound. Then, 
the Pulay´s scaled quantum mechanical force field (SQMFF) methodology was used 
together with the corresponding normal internal coordinates in order to perform the 
complete assignment of the vibrational spectra. In addition, the scaled force constants 
were also presented together with the force fields by using both levels of approximation. 
In this chapter, the Raman spectrum for the compound at the B3LYP/6-31G* level of 
theory was predicted. 

Keywords: 1-benzoxazin-4-one, 2-(4-methylphenyl)-4H-3, DFT calculations, 
force field, molecular structure, vibrational spectra. 

INTRODUCTION 

Recently, a series of twenty derivatives of 2-aryl-4H-3,1-benzoxazin-4-one have 
been synthesized and their potential therapeutically significance tested against two  
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strains of Gram positive bacteria and four strains of Gram negative bacteria have 
been reported by Khan et al. [1]. The study has revealed that 2-aryl-4H-3,1-
benzoxazin-4-ones possess good bactericidal activity against a panel of bacteria 
causing common bacterial diseases and therefore opens the possibility of finding 
latest clinically useful antibacterial compounds [1]. Many previous studies have 
also demonstrated that the benzoxazinones derivatives are promising as antifungal 
and antibacterial agents [2-5] and, moreover, they are broadly used directly or 
indirectly in numerous applications [6-13], such as, intermediates in organic 
synthesis to obtain 4(3H)quinazolinones [6-10], compounds with interesting 
biological activities (antifungal, antibacterial, antiviral, antitubercular and 
anticancer) [11-13]. Industrially, the syntheses of poly-benzoxazines are of 
importance in the electronics and aerospace industries because they constitute 
thermosetting resins with remarkable properties [13]. In this context, the study of 
the structural and spectroscopic properties of these (4H)-3,1-benzoxazinones 
derivatives are of great importance to know the relation existent between structure 
and reactivity and to identify these species by means of vibrational spectroscopy. 
For the 2-phenyl-4H-3,1-benzoxazin-4-one derivative, vibrational spectroscopic 
studies and theoretical calculations were reported by Ambujakshan et al. [14] 
while the structures and vibrational properties of the 2-(4-chlorophenyl)-4H-3,1-
benzoxazin-4-one derivative were recently reported by Castillo et. al. [15] by 
using theoretical calculations based on the density functional theory (DFT). In this 
chapter, as part of our studies on compounds of pharmacological and industrial 
interest [16-32] and, with the objective of calculating the structural and 
vibrational properties of other 4H-3,1-benzoxazinones derivative, we considered 
here the study of 2-(4-methylphenyl)-4H-3,1-benzoxazin-4-one. The preparation 
of this compound was previously reported by Rai [9] who has characterized it 
compound by means of thin layer chromatography (TLC) and IR, 1H-NMR and 
Mass spectra. The crystal and molecular structure of this compound is unknown 
and, so far, there is no theoretical studies related with the geometry and 
assignments of the infrared and Raman spectra. The goals of this work are: (i) 
determine the best calculation level that reproduce the structure and the available 
experimental infrared spectrum of 2-(4-methylphenyl)-4H-3,1-benzoxazin-4-one, 
(ii) determine the more stable structure of the compound and to calculate their 
structural properties and, (iii) perform the complete assignments of all the bands 
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observed in the vibrational spectra. For these purposes, the optimizations of the 
structures and the calculations of the corresponding frequencies were performed 
by using the B3LYP/6-31G* and B3LYP/6-311++G** levels of approximations. 
In this work, two basis sets were used in order to observe the influence of the size 
of basis sets on the structural and vibrational properties. For this derivative, the 
molecular force field was calculated at the B3LYP/6-31G* level using the normal 
internal coordinates and the generalized valence force field (GVFF) with the SQM 
methodology [33]. The study of structural parameters such as the bonds order, 
charge-transfers and stabilization energies are important in this compound due to 
the presence in their structure of the methyl phenyl and benzoxazin rings. Hence, 
these properties were obtained by using the Natural Bond Orbital (NBO) 
calculations [34, 35] and both basis sets while the topological properties were 
calculated by means of the Atoms in Molecules (AIM) [36, 37] theory. On the 
other hand, the prediction of the reactivity in this compound is of interest 
specially if it is used as a pharmacologic drug and, for this reason, the energy gap 
values were also calculated at the same approximation levels by means of the 
frontier highest occupied molecular orbital (HOMO) and lowest unoccupied 
molecular orbital (LUMO) orbitals. Finally, a comparison on the calculated 
structural and vibrational properties for this derivative with those corresponding 
to 2-(4-chlorophenyl) -4H-3,1-benzoxazin-4-one [15] was presented. 

COMPUTATIONAL DETAILS 

Here, all the studied properties were calculated by using the optimized geometries 
for the stable structure of 2-(4-methylphenyl)-4H-3,1-benzoxazin-4-one (MPB) 
employing the hybrid B3LYP/6-31G*and B3LYP/6-311++G** methods. The 
most stable MPB structure with C1 symmetry by using both levels of 
approximations can be seen in Fig. 1 together with the atoms labelling. The 
topological properties for MPB were calculated employing the AIM2000 program 
[37] while the natural charges, bond orders and stabilization energies were 
computed with the NBO 3.1 program [35], as specified by the Gaussian 03 
program [38]. The structural formulas corresponding to MPB, 2-(4-chlorophenyl)-
4H-3,1-benzoxazin-4-one (CPB) and 2-phenyl-4H-3,1-benzoxazin-4-one (PB) are 
C15H11NO2, C14H8NO2Cl and C14H9NO2, respectively. 
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S19 = r (18-21)  C18-C21 

S20 = r (21-23)  C21-C23 

S21 = r (1-7)  C-H 

S22 = r (2-8)  C-H 

S23 = r (5-10)  C-H 

S24 = r (6-11)  C-H 

S25 = r (17-20)  C-H 

S26 = r (18-22)  C-H 

S27 = r (19-24)  C-H 

S28 = r (21-25)  C-H 

S29 = 2  (C26-H28) -  (C26-H27) -  (C26-H29) a CH3 

S30 =  (C26-H27) -  (C26-H29) a CH3

S31 =  (C26-H28) +  (C26-H27) +  (C26-H29) s CH3

S32 =  (H7-C1-C2) -  (H7-C1-C6) C-H) 

S33 =  (H8-C2-C3) -  (H8-C2-C1) C-H) 

S34 =  (H10-C5-C6) -  (H10-C5-C4) C-H) 

S35=  (H11-C6-C1) -  (H11-C6-C5) C-H) 

S36 =  (H20-C17-C19) -  (H20-C17-C16) C-H) 

S37 =  (H22-C18-C16) -  (H22-C18-C21) C-H) 

S38 =  (H25-C21-C18) -  (H25-C21-C23) C-H) 

S39 =  (H24-C19-C17) -  (H24-C19-C23) C-H) 

S40 =  (O15-C9-C4) -  (O15-C9-O13) C9-O15) 

S41 =  (H7-C1-C2-C6) C1-H7 

S42 =  (H8-C2-C3-C1) C2-H8 

S43 = (H11-C6-C1-C5) C6-H11 

S44 =  (H10-C5-C6-C4) C5-H10 

S45=  (H20-C17-C19-C16) C17-H20 

S46 =  (H24-C19-C23-C17) C19-H24 

S47=  (H25-C21-C18-C23) C21-H25 

S48 =  (H22-C18-C16-C21) C18-H22 

S49 =  (O15-C9-C4-O13) C9-O15 

S50 = 6-1/2 [ (C6-C5-C4) +  (C4-C3-C2) +  (C2-C1-C6) -  (C5-C4-C3) 

-  (C3-C2-C1) -  (C1-C6-C5)] 
R1 (A1) 

S51 = 12-1/2 [2 (C6-C5-C4) -  (C5-C4-C3) -  (C4-C3-C2) + 2 (C3-C2-C1) 

-  (C2-C1-C6) -  (C1-C6-C5)] 
R2 (A1) 

S52 = ½ [ (C5-C4-C3)-  (C4-C3-C2)+  (C2-C1-C6)-  (C1-C6-C5)] R3 (A1)
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S53 = 6-1/2 [ (C5-C4-C3-C2) -  (C4-C3-C2-C1) +  (C3-C2-C1-C6) 

-  (C2-C1-C6-C5) +  (C1-C6-C5-C4) -  (C6-C5-C4-C3)] 
R1 (A1) 

S54 = ½ [- (C3-C2-C1-C6)+  (C5-C4-C3-C2)-  (C6-C5-C4-C3) 

+  (C2-C1-C6-C5)] 
R2 (A1) 

S55 = 12-1/2 [- (C5-C4-C3-C2) + 2 (C4-C3-C2-C1) -  (C3-C2-C1-C6) 

-  (C2-C1-C6-C5) + 2 (C1-C6-C5-C4) -  (C6-C5-C4-C3)] 
R3 (A1)

S56 = 6-1/2 [ (C4-C9-O13) +  (O13-C12-N14) +  (N14-C3-C4) 

-  (C9-O13-C12) -  (C12-N14-C3) -  (C3-C4-C9)] 
R1 (A2) 

S57= 12-1/2 [2 (C4-C9-O13) -  (C9-O13-C12) -  (O13-C12-N14) 

+ 2 (C12-N14-C3)-  (N14-C3-C4) -  (C3-C4-C9)] 
R2 (A2) 

S58 = ½ [ (C9-O13-C12)-  (O13-C12-N14)+  (N14-C3-C4)-  (C3-C4-C9)] R3 (A2)

S59 = 6-1/2 [ (C9-O13-C12-N14) -  (O13-C12-N14-C3) +  (C12-N14-C3-C4) 

-  (N14-C3-C4-C9) +  (C3-C4-C9-O13) -  (C4-C9-O13-C12)] 
R1 (A2) 

S60 = ½ [- (C12-N14-C3-C4)+  (C9-O13-C12-N14)-  (N14-C3-C4-C9) 

+  (C4-C9-O13-C12)] 
R2 (A2) 

S61 = 12-1/2 [- (C9-O13-C12-N14) + 2 (O13-C12-N14-C3) -  (C12-N14-C3-C4) 

-  (N14-C3-C4-C9) + 2 (C3-C4-C9-O13) -  (C4-C9-O13-C12)] 
R3 (A2)

S62 = 6-1/2 [ (C21-C23-C19) +  (C19-C17-C16) +  (C16-C18-C21) 

-  (C23-C19-C17) -  (C17-C16-C18) -  (C19-C17-C16)] 
R1 (A3) 

S63 = 12-1/2 [2 (C21-C23-C19) -  (C23-C19-C17) -  (C19-C17-C16) 

+ 2 (C17-C16-C18)-  (C16-C18-C21) -  (C18-C21-C23)] 
R2 (A3) 

S64 = ½ [ (C23-C19-C17)-  (C19-C17-C16)+  (C16-C18-C21)-  (C18-C21-C23)] R3 (A3)

S65 = 6-1/2 [ (C23-C19-C17-C16) -  (C19-C17-C16-C18) +  (C17-C16-C18-C21) 

-  (C16-C18-C21-C23) +  (C18-C21-C23-C19) -  (C21-C23-C19-C17)] 
R1 (A3) 

S66 = ½ [- (C17-C16-C18-C21)+  (C23-C19-C17-C16)-  (C21-C23-C19-C17) 

+  (C16-C18-C21-C23)] 
R2 (A3) 

S67 = 12-1/2 [- (C23-C19-C17-C16) + 2 (C19-C17-C16-C18) -  (C17-C16-C18-C21) 

-  (C16-C18-C21-C23) + 2 (C18-C21-C23-C19) -  (C21-C23-C19-C17)] 
R3 (A3)

S68 = ( N14-C3-C4-C5) + ( N14-C3-C4-C9) - ( C2-C3-C4-C9) - ( C2-C3-C4-C5) Butt 

S69 =  (C12-C16-C17-C18) C12-C16 

S70 =  (C16-C12-O13-N14) C16-C12 

S71 = ( O13-C12-C16-C17) + ( O13-C12-C16-C18) - ( N14-C12-C16-C17) + 

( N14-C12-C16-C18) 
wA2A3 

S72=  (C18-C16-C12) -  (C17-C16-C12) C12-C16) 

S73 =  (O13-C12-C16) -  (N14-C12-C16)  C12-O13) 

S74= 2 (H27-C26-H29) -  (H29-C26-H28) -  (H27-C26-H28) a CH3 

S75=  (H29-C26-H28) -  (H27-C26-H28) a CH3

S76=  (H29-C26-H27) +  (H29-C26-H28) +  (H27-C26-H28) - -C26-C23- 
H28-C26-C23- H27-C26-C23 

s CH3
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S77 = 2H29-C26-C23-H28-C26-C23) - H27-C26-C23  CH3

S78 = H28-C26-C23) - H27-C26-C23 ’ CH3 

S79 = (C21-C23-C26-H29) + (C21-C23-C26-H27) + (C21-C23-C26-H28) w(CH3) 

S80=  (C26-C23-C21-C19) C26-C23 

S 81 =  (C26-C23-C19) -  (C26-C23-C21) C23-C26)
Abbreviations:, stretching;  deformation in the plane;  deformation out of plane; wag, wagging; torsion; R, 
deformation ring R, torsion ring; , rocking; tw, twisting; , angular deformation; , deformation; Butt, butterfly; a, 
antisymmetric; s, symmetric; A1, benzyl ring; A2, pyrrol ring; a= cos 144º, b=cos 72º 

The SQMFF methodology [33] was employed to evaluate the harmonic force field 
of the compound by using the B3LYP/6-31G* method and, then, the complete 
assignments of the vibrational spectra was performed taking into account the 
potential energy distribution (PED) components  10%. The GaussView program 
[40] was used to analyze the vibration normal modes. 

RESULTS AND DISCUSSION 

Geometry Optimization 

Table 2 show a comparison of the total energy and dipole moment values for 
MPB by using both levels of theory with those reported for 2-(4-chlorophenyl)-
4H-3,1-benzoxazin-4-one (CPB) [15]. The energy values for MPB with both 
combinations are enough higher than the other ones, as it is expected, due to that 
CPB has in their structure a Cl atom linked to the phenyl ring. The similar dipolar 
moment values for both molecules show that the size and the electronegativity of 
that atom have practically no influence on those values. This way, only the energy 
values are strongly dependent on the method used, as can be seen in Table 2. 

Table 2: Calculated total energy (E) and dipolar moments for 2-(4-methylphenyl)-4H-3,1-
benzoxazin-4-one 

B3LYP 

2-(4-methylphenyl)-4H-3,1-benzoxazin-4-onea 

Property 6-31G* 6-311++G** 

E (Hartrees) -783.4568 -783.6576 

 (D) 3.01 3.26 

2-(4-chlorophenyl)-4H-3,1-benzoxazin-4-oneb 

E (Hartrees) -1203.7336 -1203.9517 

 (D) 3.10 3.30 
aThis work 
bFrom Ref [15] 
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The calculated geometrical parameters for MPB by using the two methods were 
compared with the experimental values determined for 2-phenyl-4H-3,1-
benzoxazin-4-one (PB) by X-ray diffraction [41], as can be seen in Table 3. 
Experimentally, the PB molecule is nearly planar with a dihedral angle of 3.72º 
(4) between the planar phenyl ring and the 3,1-benzoxazin-4-one moiety. On the 
contrary, the theoretical calculations by using both basis sets predict the MPB 
structure as essentially planar with the dihedral angles values between both rings 
of 0.2 and 0.3º. Comparing the theoretical results with the experimental ones by 
means of the root means of square deviations (rmsd) the values shows that both 
basis sets reproduce quite well the bond lengths (0.004 Å) and the bond angles 
(0.15º). Moreover, the calculated C12-N14 distances at the same levels 
calculations show that these bonds have a certain double character, as 
experimentally observed in CPB [15]. Probably, the molecular MPB structure is 
stabilized by intermolecular C-H---O hydrogen bonds as in CPB, whose crystal 
packing is stabilized by weak intermolecular C-H---O and π-π stacking 
interactions [41], as can be seen in Fig. 2. 

Table 3: Calculated geometrical parameters for 2-(4-methylphenyl)-4H-3,1-benzoxazin-4-one 

2-(4-methylphenyl)-4H-3,1- 
benzoxazin-4-onea 

2-Phenyl-4H-3,1-benzoxazin-4-oneb 

Parameter 6-31G* 6-311++G** Experimental 

Bond Length (Å) 

C1-C2 1.388 1.385 1.369 (2) 

C2-C3 1.406 1.405 1.394 (2) 

C3-C4 1.413 1.411 1.393 (2) 

C4-C5 1.402 1.401 1.387 (2) 

C5-C6 1.388 1.385 1.371 (2) 

C4-C9 1.461 1.461 1.448 (2) 

C1-C6 1.405 1.404 1.381 (3) 

C9-O15 1.205 1.200 1.1926 (19) 

C9-O13 1.401 1.400 1.3791 (19) 

C12-O13 1.370 1.369 1.3702 (18) 

C12-N14 1.288 1.284 1.275 (2) 

C12-C16 1.471 1.470 1.462(2) 

C3-N14 1.387 1.385 1.394 (2) 

C16-C17 1.406 1.403 1.384(2) 

C16-C18 1.403 1.400 1.388(2) 
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C17-C19 1.388 1.386 1.371(2) 

C18-C21 1.393 1.391 1.376 (3) 

C19-C23 1.405 1.403 1.374(3) 

C21-C23 1.401 1.398 1.367 (3) 

C23-C26 1.510 1.508  

RMSD# 0.004 0.004  

Bond angle (degrees) 

C1-C2-C3 119.98 120.00 119.49 (16) 

C2-C3-C4 118.86 118.85 119.05 (15) 

C3-C4-C5 120.74 120.70 120.63 (15) 

C4-C5-C6 119.71 119.73 119.55 (16) 

C5-C6-C1 119.84 119.84 120.00 (17) 

C2-C1-C6 120.88 120.88 121.27 (16) 

C3-C4-C9 118.86 118.77 118.68 (15) 

C5-C4-C9 120.40 120.53 120.68 (15) 

C12-C16-C17 119.47 119.57 119.16 (15) 

C17-C16-C18 119.02 118.95 119.27 (17) 

O13-C9-C4 114.36 114.27 115.34 (14) 

O15-C9-C4 127.81 127.94 127.66 (16) 

C16-C17-C19 120.25 120.29 120.20 (18) 

C12-C16-C18 121.51 121.49 121.56 (16) 

C17-C19-C23 121.21 121.23 119.9 (2) 

C19-C23-C21 118.09 118.05 120.64 (19) 

C21-C23-C26  121.18 121.24 119.7 

C19-C23-C26 120.72 120.70 119.7 

C18-C21-C23 121.29 121.28 119.9 (2) 

C12-O13-C9 122.21 122.38 121.64 (12) 

N14-C12-O13 124.64 124.43 124.73 (15) 

N14-C12-C16 122.48 122.71 122.90 (15) 

C3-N14-C12 118.08 118.27 117.80 (14) 

C2-C3-N14 119.29 119.28 119.22 (15) 

C4-C3-N14 121.84 121.87 121.73 (14) 

O13-C12-C16 112.88 112.85 112.37 (14) 

O15-C9-O13 117.83 117.79 117.00 (15) 

C16-C18-C21 120.13 120.19 120.05 (19) 

RMSD# 0.15 0.15  

Dihedral angles (degrees) 

C19-C17-C16-C18 - 0.050 -0.077 0.9 (2) 

C17-C16-C18-C21 0.042 0.060 −0.4 (3) 
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C16-C18-C21-C23 0.118 0.102 0.0 (3) 

C18-C21-C23-C19 -0.262 -0.243 −0.1 (3) 

C21-C23-C19-C17 0.254 0.227 0.7 (3) 

C23-C19-C17-C16 -0.101 -0.070 −1.0 (3) 

C19-C17-C16-C12 -179.89 -179.92 −179.33 (15) 

C2-C3-C4-C9 179.99 179.99 178.16 (14) 

C2-C3-C4-C5 -0.003 -0.006 −0.8 (2) 

N14-C3-C4-C5 -180.00 179.99 178.74 (14) 

C6-C1-C2-C3 0.00 0.00 −0.3 (3) 

N14-C3-C4-C9 -0.00 -0.010 −2.3 (2) 

C5-C6-C1-C2 -0.00 -0.004 −0.6 (3) 

C4-C5-C6-C1 0.00 -0.000 0.8 (3) 

N14-C12-O13-C9 0.00 -0.015 0.1 (2) 

C2-C3-N14-C12 -179.99 -179.99 179.81 (15) 

C4-C3-N14-C12 0.005 0.013 0.2 (2) 

C3-N14-C12-C16 -179.97 -179.98 −179.59 (12) 

C3-N14-C12-O13 -0.005 -0.000 0.9 (2) 

C1-C2-C3-N14 180.00 -180.00 −178.56 (14) 

C1-C2-C3-C4 0.00 0.00 1.0 (2) 

N14-C12-C16-C17 0.00 0.091 −3.3 (2) 

C5-C4-C9-O13 179.99 179.99 −177.93 (14) 

C5-C4-C9-O15 -0.003 0.005 3.1 (3) 

O13-C12-C16-C18 0.198 0.268 −3.9 (2) 

O13-C12-C16-C17 -179.97 -179.89 176.31 (13) 

C14-C12-C16-C18 -179.83 -179.75 176.50 (15) 

C12-C16-C18-C21 179.88 179.90 179.88 (15) 

C9-O13-C12-C16 179.97 179.96 −179.43 (13) 

C3-C4-C9-O15 180.00 180.00 −175.84 (17) 

O15-C9-O13-C12 -180.00 -179.99 176.92 (16) 

C3-C4-C9-O13 -0.000 -0.005 3.1 (2) 

C4-C9-O13-C12 0.000 0.017 −2.1 (2) 

C3-C4-C5-C6 0.00 0.005 −0.1 (2) 

C9-C4-C5-C6 -179.99 -179.99 −179.02 (15) 

C17-C19-C23-C26 -178.88 -178.92  

C18-C21-C23-C26 178.87 178.90  
cRMSD# 30.66 27.02  

aThis work 
bFrom Ref [41] 
cRMSD 
#See text 
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7. H 0.243 0.209 7. H 0.245 0.210 

8. H 0.252 0.219 8. H 0.253 0.220 

9. C 0.808 0.792 9. C 0.808 0.792 

10. H 0.260 0.230 10. H 0.261 0.230 

11. H 0.244 0.211 11. H 0.245 0.212 

12. C 0.612 0.599 12. C 0.609 0.596 

13. O -0.530 -0.537 13. O -0.531 -0.537 

14. N -0.511 -0.512 14. N -0.507 -0.508 

15. O -0.558 -0.554 15. O -0.554 -0.549 

16. C -0.139 -0.108 16. C -0.132 -0.101 

17. C -0.177 -0.153 17. C -0.172 -0.146 

18. C -0.186 -0.162 18. C -0.183 -0.156 

19. C -0.233 -0.204 19. C -0.249 -0.224 

20. H 0.258 0.228 20. H 0.265 0.233 

21. C -0.232 -0.204 21. C -0.247 -0.223 

22. H 0.258 0.228 22. H 0.264 0.233 

23. C -0.009 -0.003 23. C -0.030 -0.020 

24. H 0.237 0.204 24. H 0.257 0.224 

25. H 0.238 0.205 25. H 0.258 0.225 

26. C -0.692 -0.593 26. Cl 0.008 0.015 

27. H 0.244 0.212    

28. H 0.249 0.217    

29. H 0.240 0.208   
aThis work 
bFrom Ref [15] 

The results with both basis sets show clearly that the charges on the atoms of 
phenyl ring fused with the oxazin moiety are practically constants; indicating that 
the stability of MPB is mainly associated with the variations on the charges of the 
atoms belonging to the methylphenyl or chlorophenyl rings, as consequence of 
exchange Cl by CH3. Hence, the effect of this exchange is the decreasing in the 
charge values on the atoms belonging to the methylphenyl ring. For MPB, the 
calculated bond orders are given in Table 5 compared with the corresponding 
values for the CPB derivative [15]. 
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Table 5: Wiberg bond Index for the 2-(4-methylphenyl)-4H-3,1-benzoxazin-4-one at different 
theory levels 

B3LYP METHOD 

2-(4-methylphenyl)-4H-3,1-benzoxazin-4-onea 2-(4-chlorophenyl)-4H-3,1-benzoxazin-4-oneb 

Atoms 6-31G 6-311++G** Atoms 6-31G* 6-311++G** 

1. C 3.945 3.963 1. C 3.944 3.963 

2. C 3.944 3.959 2. C 3.943 3.958 

3. C 3.985 3.986 3. C 3.984 3.986 

4. C 3.984 3.987 4. C 3.984 3.987 

5. C 3.935 3.953 5. C 3.934 3.953 

6. C 3.945 3.963 6. C 3.945 3.962 

7. H 0.942 0.959 7. H 0.941 0.958 

8. H 0.939 0.956 8. H 0.938 0.955 

9. C 3.829 3.838 9. C 3.829 3.837 

10. H 0.935 0.950 10. H 0.934 0.950 

11. H 0.942 0.958 11. H 0.941 0.957 

12. C 3.887 3.889 12. C 3.889 3.892 

13. O 2.210 2.216 13. O 2.209 2.215 

14. N 3.087 3.092 14. N 3.089 3.093 

15. O 2.078 2.079 15. O 2.083 2.084 

16. C 3.997 3.995 16. C 3.998 3.997 

17. C 3.934 3.954 17. C 3.931 3.952 

18. C 3.935 3.955 18. C 3.933 3.953 

19. C 3.946 3.963 19. C 3.940 3.957 

20. H 0.935 0.951 20. H 0.932 0.948 

21. C 3.946 3.962 21. C 3.940 3.957 

22. H 0.935 0.950 22. H 0.932 0.948 

23. C 3.999 4.004 23. C 4.016 4.019 

24. H 0.945 0.961 24. H 0.935 0.952 

25. H 0.945 0.960 25. H 0.935 0.952 

26. C 3.836 3.884 26. Cl 1.217 1.232 

27. H 0.942 0.957    

28. H 0.940 0.955    

29. H 0.943 0.959    
aThis work 
bFrom Ref [15] 

For MPB, we observed that the bond order values corresponding to the atoms of 
phenyl ring fused with the oxazin moiety remain practically constant, as observed 
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previously. The second order perturbation energies E(2) (donor  acceptor) 
obtained by NBO analysis for the most important delocalizations of MPB are 
presented in Table 6. The values by using both methods were compared with 
those obtained for the CPB derivative [15]. The results with both calculation 
levels, show that the contributions of the stabilization energies to the ET* * 

charge transfers due mainly to the chlorophenyl ring are drastically higher for 
CPB than those corresponding to the methylphenyl ring for MPB. 

Table 6: Main delocalization energy (in kJ/mol) for 2-(4-methylphenyl)-4H- 3,1-benzoxazin-4-
one at different theory levels 

B3LYP Method 

2-(4-methylphenyl)-4H-3,1-benzoxazin-4-onea 2-(4-chlorophenyl)-4H-3,1-benzoxazin-4-oneb 

Delocalization 6-31G* 6-311++G** Delocalization 6-31G* 6-311++G** 

 C1-C2  * C3-C4 90.00 90.79  C1-C2  * C3-C4 90.71 91.46 

 C1-C2  * C5-C6 70.98 70.89  C1-C2  * C5-C6 71.10 71.02 

 C3-C4 * C1-C2 62.49 61.45  C3-C4 * C1-C2 62.53 61.49 

 C3-C4  * C5-C6 83.60 83.77  C3-C4  * C5-C6 82.76 82.93 

 C3-C4 * C9=O15 110.81 105.71  C3-C4 * C9=O15 110.18 104.96 

 C5-C6 * C1-C2 85.10 85.15  C5-C6 * C1-C2 84.85 84.94 

 C5-C6 * C3-C4 73.53 73.65  C5-C6 * C3-C4 74.45 74.57 

 C12-N14 * C3-C4 74.40 75.37  C12-N14 * C3-C4 72.56 73.57 

C16-C18  * C12-N14 95.26 93.42 C16-C18  * C12-N14 90.75 89.03 

C16-C18  *C17-C19 84.39 84.85 C16-C18  *C17-C19 85.48 86.02 

C16-C18  *C21-C23 73.78 73.11 C16-C18  *C21-C23 86.15 85.27 

 C17-C19 * C16-C18 74.53 74.70  C17-C19 * C16-C18 75.45 75.74 

 C17-C19 * C21-C23 91.17 92.34  C17-C19 * C21-C23 90.83 92.25 

 C21-C23 * C16-C18 99.23 100.03  C21-C23 * C16-C18 84.27 84.52 

 C21-C23 * C17-C19 71.98 71.56  C21-C23 * C17-C19 72.73 72.48 

ET  *  1241.25 1236.79 ET  *  1234.8 1230.25 

* C9-O13 * C12-O13 101.53 89.70 * C9-O13 * C12-O13 88.11 78.96 

* C9-O15 * C3-C4 891.51  * C9-O15 * C3-C4 915.59 - 

* C12-N14 * C3-C4 757.75  * C12-N14 * C3-C4 667.17 807.91 

* C12-N14 * C16-C18 359.31 363.20 * C12-N14 * C16-C18 458.59 464.44 

   * C3-C4 * C5-C6 1188.54 1157.19 
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Table 6: contd… 

   * C21-C23 * C16-C18 968.05 1033.76 

   * C21-C23 * C17-C19 589.25 650.62 

ET * *  2110.1 452.9 ET * *  4875.3 4192.88 

LP(2)O13  * C9-O15 149.23 139.44 LP(2)O13  * C9-O15 146.51 136.73 

LP(2)O13  * C12-N14 164.32 158.97 LP(2)O13  * C12-N14 165.70 160.22 

LP(1)N14  * C12-O13 85.69 82.30 LP(1)N14  * C12-O13 85.73 82.35 

LP(2)O15  * C4-C9 72.11 68.18 LP(2)O15  * C4-C9 72.15 68.34 

LP(2)O15  * C9-O13 169.54 162.14 LP(2)O15  * C9-O13 171.55 164.40 

   LP(3)Cl26  * C21-C23 52.67 54.34 

ET LP * 640.89 611.03 ET LP * 694.31 666.38 

ETotal 3992.23 2258.91 ETotal 6804.41 6089.51 
aThis work 
bFrom Ref [15] 

On the contrary, the ET * charge transfers are higher for MPB than CPB, as 

observed in Table 6. Thus, the ETotal larger energies for CPB than MPB show a 

higher stability for the first compound attributed principally to the hyperconjugation 

of the chlorophenyl ring. 

AIM Studies 

The presence of a methyl group in the phenyl ring linked to the benzoxazin ring in 

MPB slightly modify the stability of this compound in relation to CPB, as observed 

previously by NBO analysis by using the 6-31G* and 6-311++G** basis sets. For 

these reasons, the topological properties in the ring critical points (RCPs) of the 

benzoxazin and methylphenyl rings of MPB were also investigated by means of the 

AIM theory [36] and, then, their values were compared with those reported for CPB 

and with those calculated, in this chapter, at the same levels of approximation for the 

PB derivative. The values of the topological properties, such as the calculated charge 

electron density, () and the Laplacian values, 2(r) in the ring critical points for 

the three benzoxazin derivatives are shown in Table 7. It is necessary to clarify that 

for MPB, CPB and PB, RCP1 corresponds to the phenyl rings fused with the oxazin 

moiety; RCP2 corresponds to the oxazin ring while RCP3 corresponds to the 

methylphenyl, chlorophenyl or phenyl rings. The analysis shows clearly for the 
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MPB and CPB molecules, by using both methods, that the three expected RCPs have 

slightly different topological properties and, that when increase the size of the basis 

set the values in all the cases increase too, as indicated in Table 7. It is important to 

note that for the three molecules, by using both basis sets, the topological properties 

of RCP1 do not change while between RCP2 and RCP3 the properties are different. 

Thus, in the RCPs analyzed for the three molecules the same relations in the () and 

2(r) values were observed. These relations following the trend: ()RCP2 > 

()RCP3 > ()RCP1, and 2()RCP3 > 2()RCP1 > 2()RCP2, as can be seen in 

Table 7. The AIM results are in complete agreement with the previous studies 

performed by means of NBO calculations. 

Table 7: An analysis of the Ring Critical Points (RCP) for 2-(4-methylphenyl)-4H-3,1-benzoxazin 
-4-one at different theory levels 

2-(4-Methylphenyl)-4H-3,1-benzoxazin-4-onea 

Parameters 
6-31G* 6-311G** 

RCP1 RCP2 RCP3 RCP1 RCP2 RCP3 

(r) 0.01990 0.02150 0.02015 0.02141 0.02292 0.02173 

2(r) 0.15817 0.15735 0.16029 0.15652 0.15652 0.15864 

1 -0.01495 -0.01834 -0.01507 -0.01668 -0.02008 -0.01684 

2 0.08338 0.07840 0.08274 0.08365 0.08058 0.08324 

3 0.08974 0.09729 0.09261 0.08956 0.09603 0.09223 

1 /3 0.16659 0.18851 0.16272 0.18624 0.20910 0.18259 

2-(4-Chlorophenyl)-4H-3,1-benzoxazin-4-oneb 

Parameters RCP1 RCP2 RCP3 RCP1 RCP2 RCP3 

(r) 0.01991 0.02148 0.02016 0.02142 0.02290 0.02175 

2(r) 0.15824 0.15723 0.15996 0.15660 0.15636 0.15852 

1 -0.01497 -0.01833 -0.01517 -0.01670 -0.02005 -0.01692 

2 0.08355 0.07819 0.08529 0.08381 0.08032 0.08519 

3 0.08964 0.09737 0.08982 0.08948 0.09611 0.09024 

1 /3 0.16700 0.18825 0.16889 0.18663 0.20861 0.18750 

2-Phenyl-4H-3,1-benzoxazin-4-onea 

Parameters RCP1 RCP2 RCP3 RCP1 RCP2 RCP3 

(r) 0.01990 0.02149 0.02109 0.02142 0.02292 0.02282 

2(r) 0.15823 0.15732 0.16474 0.15660 0.15648 0.16269 

1 -0.01496 -0.01833 -0.01652 -0.01670 -0.02007 -0.01855 

2 0.08346 0.07834 0.08354 0.08375 0.08049 0.08453 
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Table 7: contd… 

3 0.08973 0.09730 0.09772 0.08954 0.09606 0.09671 

1 /3 0.16675 0.18839 0.16905 0.18651 0.20893 0.19181 
aThis work 
bFrom Ref [15] 

VIBRATIONAL ANALYSIS 

Fig. 3 show the infrared spectrum of MPB in solid phase recorded and reported by 
Rai [9] whiles the corresponding theoretical predicted by us at B3LYP/6-31G* level 
can be seen in Fig. 4. A comparison between the predicted infrared spectrum for 
MPB by using the B3LYP/6-31G* method with the corresponding experimental one 
is presented in Fig. 5. 

 

Figure 3: Experimental infrared spectrum of 2-(4-methylphenyl)-4H-3,1-benzoxazin-4-one (From 
Ref [9]). 

The calculations with both methods show that the stable structure of MPB has C1 
symmetry and a total of 29 atoms in their structure, thus, 81 normal vibration 
modes (3N-6= 3x29-6 = 81) are expected for this molecule. Here, the entire 
vibration normal modes are IR and Raman active. For MPB, the experimental and 
calculated wavenumbers, the 6-31G*/SQM and the corresponding assignments 
are summarized in Table 8 together with those corresponding to CPB [15] and PB 
[42]. On the other hand, the theoretical and observed wavenumbers, potential 
energy distribution and assignment for MPB are given in Table 9. In the higher 
wavenumbers region, those between 3000-2500 and 2000-500 cm-1 are observed a 
set of characteristic broad IR bands that could probably be assigned to the 
hydrogen bonds due to the crystal packing of the molecules of MPB in the solid 
phase, as was experimentally reported for CPB (see Fig. 2) [41]. For MPB, the 
complete vibrational assignment was performed by comparison with assignments 
reported for similar molecules [15-20, 24-29, 42, 43] and taking into account the 
results of the calculations performed by using the B3LYP/6–31G* method. The 
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scale factors used to calculate the force field of MPB are defined only for the 
B3LYP/6-31G* method and they were reported by Pulay et al. [33]. 

 

Figure 4: Theoretical spectra of 2-(4-methylphenyl)-4H-3,1-benzoxazin-4-one at the B3LYP/6-
31G*: (a), infrared spectrum and (b) Raman spectrum. 

 

Figure 5: Comparison between the calculated infrared spectrum of 2-(4-methylphenyl)-4H-3,1-
benzoxazin-4-one by using B3LYP/6–31G* level (Upper) with the corresponding experimental 
(From Ref [9]). 
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Table 8: Observed and calculated wavenumbers (cm-1) and assignment for 2-(4-methylphenyl)-
4H-3,1-benzoxazin-4-one 

2-phenyl-4H-3,1- 
benzoxazin-4-oneb 

2-(4-chlorophenyl)-4H-3,1-benzoxazin-4-onec 2-(4-methylphenyl)-4H-3,1-benzoxazin-4-onea

IR 
Solid 

Raman 
Solid 

Assignment 
IR 

Solid 
SQMd Assignment 

IR 
Solid 

SQMd Assignment 

  CH I 20a  3107 C18-H22     

  CH I 20b  3103 C17-H20   3101  C18-H22 

  CH II 20a  3094 C5-H10   3097  C17-H20 

  CH II 20b  3091 C21-H25   3094  C5-H10 

  CH I 2  3090 C2-H8   3089  C2-H8 

  CH II 7b  3089 C19-H24   3076  C6-H11 

3060 w 3070 s CH I 13 3076 w 3077 C6-H11  3063 s 3061  C1-H7 

3050 w 3022 w CH II 2      3056  C21-H25 

3040 m        3052  C19-H24 

   3025 vw 3063 C1-H7     

       3009 s 3000 a  CH3 

       2920 s 2971 a  CH3 

       2854 s 2917 s  CH3 

1763 vs 1757 m C=O 1768 vs 1788 C9-O15  1759 vs 1785  C9-O15 

1692 s  C=N 1657 s 1616 C1-C2     

   1624 s 1603 C12-N14     

1613 s 1623 vs Ph II 8b 1600 sh 1595 C18-C21  1608 s 
1618 
1615 
1598 

 C18-C21 

 C1-C2 

 C12-N14   

1585 sh 1599 vs νPh I 8a 1566 m 1568 C3-C4  1568 s 1568  C16-C18 

1578 s 1574 s Ph I 8b 1566 m 1559 C16-C17   1560  C16-C17 

   Ph II 8a 1490 sh 1492 C18-H22)  1510 s 1513 C19-H24) 

1490 m   Ph I 19a 1475 s 1470 C5-H10)     

1474 s 1476 s Ph II 19b 1460 sh
1465 

 
(C17-H20), (C6-H11) 

1471 s 
 

1470 
1466 
1458 
1450 

C5-C6 

(C6-H11) 

aCH3 

aCH3 

1450 m 1451 w Ph II 19a 1425 m 1403 C17-C19    

      1412 m 1411 C17-C19 

      1381 m 1378 sCH3 

  Ph I 19b 1320 sh 1321 C2-C3  1322 C4-C5 

       1316 (C2-H8) 

 1322 s Ph I 14, CN 1315 s 1315 (C2-H8)  1314 (C18-H22) 

1315 s  Ph II 3 1300 sh 1309 C16-C18 1311 s 1311  C21-C23 

 1300 w δCH II 14 1290 sh 1295 C19-C23    

  δCH I 3 1271 m 1254 C3-N14 1259 s 1254  C3-N14 

1258 s 1259 vs ?C(X)X II 13 ?CO 1240 sh 1243 C4-C5 1221 s 1244 (C5-H10) 

1236 m  δ CH I 9a 1222 m 1207 C4-C9  1208 C4-C9 

1183 m 1183 w δ CH II 15 1175 sh 1176 (C21-H25) 1180 s 
1199 
1183 

C19-C23 

(C21-H25) 
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Table 8: contd… 

   δ CH I 9b 1150 w 1156 (C1-H7) 1155 s 1155 (C1-H7) 

1153 w 1157 m 
δ CH II 9b 
δCH II 

1110 w 
1100 sh

1109 
1108 

C5-C6
(C17-H20), (C19-H24) 

 
1113 m 

1119 
1109 

(C17-H20)
R1 (A1) 

1112 m   νC(X)X II 1 1089 m 1074 C21-C23    

   νC(X)X I 1050 m 1056 C12-O13  1061 s 1057  C12-O13 

        1049 ’CH3 

1058 m 1064 w δCH I 15 1029 sh 1025 C6-C1  1038 s 1026 C6-C1 

1027 m 1028 w νCOC 1010 sh 1015 R1 (A3) 
1009 s 

 

1019 
993 
992 

R1(A3) 

C6-H11 

CH3 

1018 m  δCH I 18a 1001 s 995 C1-H7    

1012 s 1002 s δCH II 18b 990 sh 986 C9-O13  989 C9-O13 

984 m  Breathing I 1 980 sh 980 C17-H20  982 C17-H20   

  δCH I 970 sh 971 C18-H22  970 C18-H22 

  CH I 5 947 w 967 C5-H10 962 m 966 C5-H10 

  CH II 5 921 w 915 R1 (A2) 922 m 916 R1(A2) 

929 w  CH II 17b 887 w 888 C2-H8 881 w 887 C2-H8 

  CH I 17a 863 w 856 R1 (A1) 859 w 857 C2-C3 

882 w  CH I 17b 850 vw 848 C19-H24  852 C19-H24   

858 w 858 w CH II 17b 820 sh 836 C21-H25 825 s 840 C21-H25   

  CH II 17a 780 sh 785 C6-H11  787 C23-C26 

  CH I 10a 762 s 772 Butt 
769 s 

 
785 
772 

C1-H7 
Butt   

 784 w δPh(X) II 740 sh 746 R2 (A3)    

765 s  CH I, II 11 730 sh 730 C16-C12    

 749 w CH I, 11 725 m 714 R2 (A1) 725 m 
732 
729 

C3-C4 

C16-C12   

  δ Ph (X) II 4 686 s 683 C9-O15   686 C9-O15

 680 w δPh(X) I 12 657 m 669 R1 (A3) 677 s 675 R1 (A3) 

684 s   δ Ph I 4 640 sh 643 R3 (A3)   651 R3 (A3) 

   Ph II 4 625 sh 629 (C9-O15)  640 w 638 R2 (A1) 

    Ph (X) II 6a 619 w 597 
R2 (A1),  

R3 (A1) 
615 w 622 R3 (A1) 

628 m 618 w δ C=O 576 vw 542 R3 (A2) 581 vw 563 R2 (A2) 

600 w   δ Ph I 6b 532 vw 536 R1 (A1) 
540 s 

511 vw 
537 
512 

R1 (A1)  

R2 (A3) 

537 m 568 w 
δ Ph (X) II 6b 

  C=O 
476 vvw

487 
480 

R2 (A2) 

R3 (A3) 
471 w 

487 
480 

R3 (A2)   

R3 (A3)   

 520 w  Ph(X) II 16a 448 vw 448 C23-Cl26    

483 w 487 w  Ph(X) II 16b 430 sh 425 R2(A1)  425 R2 (A1) 

   Ph II 18a 415 sh 405 R2(A3)  403 R2 (A3) 

425 w   Ph(X) I 16b  384 (C12-C16)  393 (C23-C26) 

   Ph I 16ª  326 R3 (A1)   327 C23-C26 

 358 w δ Ph (X) I 6a  304 R3(A1)   316 (C9-O15) 

       276 (C12-C16)  
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BANDS ASSIGNMENTS 

CH modes. In compounds containing this group [15-20,24-29,42,43], the C-H 
stretching modes are assigned in the 3140-2849 cm-1 region. Hence, the strong IR 
band at 3063 cm-1 can be assigned to those vibration modes, as indicated in Table 8. 

For MPB, the bands located between 1510 and 1113 cm-1 are assigned to the eight 
expected in-plane deformation modes while the corresponding out-plane 
deformation modes are associated with the IR bands between 1009 and 769 cm-1, 
as observed in Table 8. 

CH3 modes. Here, the PED contribution show that the antisymmetric and 
symmetric stretching modes of the methyl group are calculated as totally pure 
modes; hence, they are easily assigned respectively to the strong IR bands at 
3009, 2920 and 2854 cm-1. 

Table 9: Observed and calculated wavenumbers (cm-1), potential energy distribution and assignment 
for the 2-(4-methylphenyl)-4H-3,1-benzoxazin-4-one 

Modes 
IRa 
Sol 

calculatedb 
IR 
Intc 

Raman
Int. 

SQM PEDa  10% 

1  3235 1.8 63.5 3101  S26( 96) 

2 3063 s 3230 2.7 40.4 3097  S25( 96) 

3  3227 10.8 237 3094  S23( 71), S24( 16) 

4  3223 7.3 63.4 3089  S22( 78) S23( 13) 

5  3209 13.7 180.5 3076  S24( 60),S21( 18),S23( 13) 

6  3193 6.2 88.1 3061  S21( 69) S24( 23) 

7  3188 21.7 128.8 3056  S28( 95) 

8  3184 18.8 110.7 3052  S27( 95) 

9 3009 s 3130 15.3 77.9 3000  S30( 93) 

10 2920 s 3099 19.3 128.3 2971  S29( 87) 

11 2854 s 3043 31.2 406 2917  S31( 92) 

12 1759 vs 1854 430 40.2 1785  S1( 80) 

13  1673 12.6 79 1618  S19( 20),S17( 19),S15( 13),S63( 10) 

14 1608 s 1671 59.9 565 1615  S10( 24),S4( 20) 

15  1652 404.5 2750 1598  S4( 27)  

16 1568 s 1621 7.9 31.7 1568  S11( 16),S12( 15),S15( 12) 

17  1614 167.2 1288.5 1560  S4( 17),S15( 17) 
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Table 9: contd… 

18 1510 s 1561 20.7 63 1513  S20( 16),S39( 14),S37( 14),S36( 13),S38( 12) 

19 1471 s 1521 22.4 118.8 1470  S12( 22),S33( 20),S34( 15),S5( 12),S32( 10) 

20  1518 122.8 392.3 1466  S35( 27),S13( 22),S32( 15) 

21  1516 8.7 50.6 1458  S75( 61),S74( 14) 

22  1510 0.2 16.3 1450  S74( 75),S75( 15) 

23 1412 m 1457 13.5 52.4 1411  S17( 20),S19( 13),S75( 12),S38( 12) 

24 1381 m 1442 1.0 72.6 1378  S76( 89)  

25  1372 35.5 84.8 1322  S8( 25) S13( 19)  

26  1361 6.0 16.1 1316  S14( 19) S33( 11),S56( 10)  

27  1353 35.2 212.4 1314  S37( 13) S8( 13) S36( 12),S39( 12) S13( 11) S38( 10) 

28 1311 s 1350 15.8 26.5 1311  S20( 28) S18( 23) S16( 12)  

29 1259 s 1298 113.5 705.4 1254  S5( 31) S3( 13)  

30 1221 s 1282 52.2 132 1244  S34( 17),S14( 16),S33( 11)  

31  1244 7.7 72.3 1208  S7( 25),S50( 14) S9( 10)  

32  1241 15.0 10.2 1199  S6( 38),S18( 14) S62( 11)  

33 1180 s 1217 62.9 132.1 1183  S38( 22),S37( 20) S36( 15) S39( 15),S19( 10) 

34 1155 s 1189 6.2 11.0 1155  S32( 30),S35( 21) S33( 15) S11( 10)  

35  1153 6.4 17.4 1119  S36( 18),S39( 17) S17( 14) S38( 12),S37( 10)  

36 1113 m 1139 10.4 2.7 1109  S50( 18),S35( 12) S34( 10) S32( 10)  

37 1061 s 1093 35.7 87.3 1057  S3( 36)  

38  1074 14.7 0.24 1049  S78( 55),S80( 11)  

39 1038 s 1061 14.6 48.4 1026  S11( 28),S2( 14)  

40 1009 s 1039 7.2 0.94 1019  S62( 51),S20( 15)  

41  1021 45.0 2.9 993  S41( 37),S43( 25),S42( 14),S44( 11),S53( 11) 

42  1017 109.6 8.0 992  S77( 39),S2( 14)  

43  1002 0.05 0.7 989  S2( 26),S77( 16),S40( 13)  

44  991 1.0 3.3 982  S45( 46),S46( 24),S65( 12)  

45  980 0.2 0.9 970  S48( 45),S47( 32)  

46 962 m 976 1.3 0.4 966  S44( 46),S42( 19),S41( 14),S43( 12)  

47 922 m 936 3.9 6.4 916  S56( 31),S2( 17),S3( 14)  

48 881 w 899 1.6 4.4 887  S42( 38),S44( 18),S43( 14)  

49 859 w 876 3.2 8.7 857  S50( 29),S52( 10),S9( 9)  

50  862 0.3 5.2 852  S46( 37),S45( 26),S47( 19),S48( 17) 

51 825 s 851 19.3 0.2 840  S47( 26),S48( 17),S46( 15),S69( 10)  

52  808 1.3 21.7 787  S63( 24),S6( 23),S15( 12), 

53  797 1.9 2.3 785  S41( 23),S49( 22),S43( 17),S42( 12)  

54 769 s 789 57.7 0.1 772  S68( 26),S53( 21),S59( 19),S43( 12)  
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55  753 4.1 32.9 732  S51( 16),S2( 10), 

56 725 m 744 4.7 5.4 729  S65( 34),S70( 21),S69( 13)  

57  701 5.1 2.4 686  S65( 28),S49( 18),S53( 14), 

58 677 s 694 17.2 0.2 675  S53( 28),S65( 27),S70( 10)  

59  656 2.0 7.9 651  S64( 74) 

60 640 w 647 4.2 5.5 638  S51( 38),S40( 10)  

61 615 w 627 6.0 2.8 622  S52( 29),S40( 20),S73( 18) 

62 581 vw 571 0.5 6.8 563  S57( 28),S51( 24),S63( 10) 

63 540 s 553 8.9 0.2 537  S68( 23),S55( 15),S53( 15)  

64 511 vw 518 2.2 5.6 512  S63( 21),S57( 18),S52( 13),S58( 13)  

65  492 1.4 11.3 487  S58( 34),S57( 25),S7( 10)  

66 471 w 492 1.6 1.1 480  S67( 24),S80( 22),S69( 14)  

67  438 0.09 0.2 425  S54( 52),S55( 27)  

68  417 0.04 0.06 403  S66( 60),S67( 19)  

69  398 0.9 1.5 393  S81( 34),S72( 20)  

70  335 3.0 0.6 327  S55( 33),S80( 17),S65( 11)  

71  319 1.9 1.9 316  S81( 25),S40( 21),S58( 15)  

72  280 1.2 1.3 276  S81( 25),S72( 16),S52( 10)  

73  257 0.001 6.3 251  S55( 25),S69( 11),S60( 10)  

74  248 0.07 0.8 243  S14( 25),S63( 24)  

75  156 0.01 2.4 151  S60( 51),S54( 20)  

76  146 1.3 0.5 142  S60( 35),S59( 28),S67( 12)  

77  105 1.2 3.2 103  S61( 38),S59( 14),S67( 11),S55( 10) 

78  93 0.4 0.3 93  S73( 43),S72( 34) 

79  48 0.2 0.4 47  S71( 27),S69( 13),S60( 11)  

80  41 1.0 2.2 40  S71( 54),S61( 12)  

81  35 0.2 0.7 31  S79( 66)  
a This work 
b DFT/B3LYP/6-31G* 
c Units are km.mol-1 
d Raman activities in Å4 (amu)-1 
e From scaled quantum mechanics force field 

The strong band at 1461 cm-1 is assigned to the two antisymmetric CH3 bending 
modes while the corresponding symmetrical mode is associated with the band of 
the medium intensity at 1381 cm-1 because these modes are predicted by 
calculations at 1450, 1458 and 1378 cm-1; for this reason, they were assigned in 
this region. For MPB, the rocking and twisting modes related with this group are 
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clearly predicted in the expected regions [16, 18, 24, 26, 29, 43] thus, they were 
assigned in those regions, as observed in Table 8. 

Skeletal modes: The skeletal modes in the compound are predicted by SQM 
calculation strongly mixed among them, as observed in Table 9. Here, in 
accordance with the values previously reported for molecules with similar rings 
[15, 16-19, 24-27, 43] and at our theoretical results, the strong IR bands at 1758, 
1608 and 1598 cm-1 are respectively assigned to the C=O, C=C and C=N 
stretchings corresponding to the different rings, as indicated in Table 8. Note that 
the C=O stretching modes for CPB (1768 cm-1) and PB (1763 cm-1) are assigned 
at higher wavenumbers than the corresponding to MPB (1759 cm-1) while for the 
C=N stretching modes are assigned in the following order: PB (1692 cm-1), CPB 
(1624 cm-1) and MPB (1608 cm-1). The C=C stretching modes for the three 
compounds are assigned approximately in the same region, as observed in Table 
8. The C-N stretching modes for CPB and MPB are predicted by calculations at 
1254 cm-1 but they are assigned respectively at 1271 and 1259 cm-1. The two C-O 
stretching modes corresponding to the oxazin rings in the three compared 
compounds are assigned approximately in the same region, thus, in PB that mode 
is assigned at 1027 cm-1, in CPB are assigned in the 1050-990 cm-1 region and, in 
MPB are assigned between 1061 and 1009 cm-1. On the other hand, the 
benzoxazin-methylphenyl stretching inter-rings are predicted at lower 
wavenumbers, it is, in MPB at 243 cm-1 while in CPB at 217 cm-1, and for this 
reason, they were not assigned. Obviously, the differences observed in the 
wavenumbers show clearly the effect of exchanging the atom of chlorine or the 
methyl group on the phenyl ring linked to the benzoxazin ring. In general, all the 
stretching modes in PB are observed at higher wavenumbers than in CPB and 
MPB. Hence, the introduction of a Cl atom or CH3 group in the phenyl ring linked 
to the benzoxazin ring generates a decrease in the wavenumbers corresponding to 
skeletal stretching modes, as can be seen in Table 8. The remaining C-C 
stretching modes for MPB were assigned in accordance with assignments reported 
for similar compounds [15, 16-19, 24-27, 43] and at our theoretical calculations. 
The deformations and torsions corresponding to the phenyl, oxazin and 
methylphenyl rings of MPB were assigned taking into consideration their relative 
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position predicted by calculations and the assignments for molecules with similar 
rings [15, 16-19, 24-27, 43], as can be seen in Table 8. The other skeletal modes 
expected for MPB were assigned as observed in Table 8. 

FORCE FIELD 

For MPB, the scaled force fields at the two approximation levels were obtained 
employing the SQM methodology [33] with the MOLVIB program [39], then, the 
force constants were calculated at the same levels of theory, as was described 
previously in section computational details. The calculated force constants were 
expressed in terms of internal coordinates and their values can be seen in Table 10 
together with those corresponding to CPB [15]. In general, the f(C=O) and f(C-N) 
force constants by using both basis sets have higher values in CPB than MPB, as 
it is expected because they are in accordance with the observed wavenumbers. 
Also, a similar variation is observed in the calculated f(C12-C16) force constants 
related to the stretching inter-rings. Thus, in MPB the value of that force constant 
is slightly higher (4.964 mdyn Å-1) than the corresponding to CPB (4.948 mdyn 
Å-1), in accordance with the observed wavenumbers, as can be seen in Table 10. 
The same variations are observed by using both calculation levels. 

Table 10: Comparison of scaled internal force constants for 2-(4-methylphenyl)-4H-3,1-
benzoxazin-4-one) 

2-(4-methylphenyl)-4H-3,1- 
benzoxazin-4-onea 

2-(4-chlorophenyl)-4H-3,1- 
benzoxazin-4-oneb 

Force 
constant 

B3LYP 
6-31G* 

B3LYP 
6-311++G** 

Force 
constant 

B3LYP 
6-31G* 

B3LYP 
6-311++G** 

f(C=O) 12.629 12.305 f(C=O) 12.685 12.385 

f(C-N) 7.556 7.434 f(C-N) 7.575 7.458 

f(C-O) 4.640 4.455 f(C-O) 4.639 4.450 

f(C12-C16) 4.964 4.873 f(C12-C16) 4.948 4.858 

f(C23-C26) 4.375 4.306 f(C-Cl) 3.304 3.256 

f(C-C)ring 6.341 6.209 f(C-C)ring 6.358 6.230 

f(C-H)ring 5.200 5.124 f(C-H) 5.235 5.155 

f(C-H)methyl 4.846 4.779    
Units are mdyn Å-1 for stretching and stretching/stretching interaction and mdyn Å rad-2 for angle deformations 
aThis work 
bFrom Ref [15] 
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HOMO-LUMO Study 

For MPB, the frontier molecular HOMO and LUMO orbitals were calculated by 
using both calculations levels and the values were compared with those calculated 
in this work for PB and with those reported for CPB [15]. The results are 
summarized in Table 11. The results show that in the three compared molecules 
the HOMO-LUMO orbitals are mainly localized on the rings, demonstrating this 
way that the HOMO-LUMOs are mostly π-antibonding type orbitals. The energy 
gap values show the following relation: MPB > CPB > PB, indicating that the two 
first compounds are less reactive and have higher chemical hardness than PB 
while PB has a higher chemical reactivity than the other ones. Clearly, we 
observed that the introduction of a Cl atom or a CH3 group in the phenyl ring 
linked to the benzoxazin ring increase the chemical hardness of the corresponding 
benzoxazin derivative. On the contrary, the lower HOMO value for the chlorinate 
derivative indicate a higher stability for this compound, in accordance with the 
NBO calculations. These results are very important especially when the 
derivatives are used as a pharmacologic compound. 

Table 11: The frontier molecular HOMO and LUMO orbitals for 2-(4-methylphenyl)-4H-3,1-
benzoxazin-4-one and 2-Phenyl-4H-3,1-benzoxazin-4-one 

Orbital 

2-(4-methylphenyl)- 
4H-3,1-benzoxazin-4-onea Orbital 

2-Phenyl-4H-3,1- 

benzoxazin-4-onea  

Orbital 

2-(4-chlorophenyl)-4H-
3,1-benzoxazin-4-oneb 

6-31G* # 6-31G* # 6-31G* # 

HOMO 
(62) 

-0.22797 -0.24081 
HOMO 

(57) 
-0.23369 -0.24772 

HOMO 
(66) 

- 0.23626 - 0.23650 

LUMO 
(63) 

-0.06613 -0.08047 
LUMO 

(58) 
-0.08772 -0.10609 

LUMO 
(67) 

- 0.07604 - 0.07521 

GAP 
(a.u.) 

-0.16184 -0.16034 
GAP 
(a.u.) 

-0.14597 -0.14163 
GAP 
(a.u.) 

- 0.16022 - 0.16129 

GAP 
(eV) 

-4.40392 -4.36311 
GAP 
(eV) 

-3.97208 -3.85398 GAP (eV) - 4.35984 - 4.38895 

aThis work 
bFrom Ref [15] 
#6-311++G** 

CONCLUSION 

In this chapter, the theoretical molecular structures of 2-(4-methylphenyl)-4H-3,1-
benzoxazin-4-one were determined by using the hybrid B3LYP/6-31G* and 
B3LYP/6-311++G** methods. The stability of 2-(4-methylphenyl)-4H-3,1-
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benzoxazin-4-one was studied by means of NBO, HOMO-LUMO and AIM studies. 
The charge values involved on the atoms belonging to the methylphenyl ring of 2-(4-
methylphenyl)-4H-3,1-benzoxazin-4-one decrease in relation to 2-(4-chlorophenyl)-
4H-3,1-benzoxazin-4-one. The reactivity predicted by using 6-31 basis set follow the 
trend: 2-Phenyl-4H-3,1-benzoxazin-4-one > 2-(4-chlorophenyl)-4H-3,1-benzoxazin-
4-one > 2-(4-methylphenyl)-4H-3,1-benzoxazin-4-one while the tendency change 
when the other basis set is used. On the other hand, the presence of a CH3 group in 
the phenyl ring linked to the benzoxazin ring increases the HOMO energy value and, 
as consequence, the stability of 2-(4-methylphenyl)-4H-3,1-benzoxazin-4-one is 
lower than 2-Phenyl-4H-3,1-benzoxazin-4-one and 2-(4-chlorophenyl)-4H-3,1-
benzoxazin-4-one, in accordance with the NBO results. Furthermore, the NBO and 
HOMO-LUMO studies reveal the strong dependence of the size of the basis set on 
the delocalization and frontier orbitals energies. A complete assignment of the 81 
normal vibration modes for 2-(4-methylphenyl)-4H-3,1-benzoxazin-4-one was 
performed. In fact, all the bands observed in the vibrational spectra were completely 
assigned for which this derivative can be easily identified by means of vibrational 
spectroscopy. The SQM force fields by using the B3LYP/6-31G* and B3LYP/6-
311++G** combinations were obtained together as a set of scaled force constants. 
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Abstract: The growth of computational power, provided by new hardware technologies and 
the development of better theoretical methods and algorithms, allows more than ever an 
improvement in the reliability of computational predictions in medical sciences, along with a 
better understanding of the underlying molecular mechanisms. However, one limitation of 
computational chemistry approaches in the field of biological systems is the complexity of the 
molecules and the environment in which such molecules are to be studied. Important issues 
such as the determination of molecular properties which depend on the electronic structure 
face a considerable challenge when all-electron methodologies are required in the 
investigation. The most rigorous and sophisticated electronic structure methodologies, like 
density functional theory (DFT), are usually overwhelmed by the molecular size of most 
pharmacological targets. However, important implementations were recently achieved by the 
developers group of the computational chemistry code deMon2k. Knowing that the 
computation of electrostatic interaction integrals is an important bottleneck in all-electron 
calculations three new implementations have been worked out in order to eliminate such 
bottleneck. These implementations allow deMon2k now to explore biological and 
pharmacological systems in the framework of all-electron DFT methodologies. 
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1. INTRODUCTION 

In theoretical chemistry, so-called ab initio (meaning from first principles) 
methods are based on the many-electron Schrödinger equation. The most 
elementary approximation for the wavefunction is obtained by the Hartree-Fock 
approach [1]. In this approximation the correlation between electrons of opposite 
spins is completely neglected. The systematic incorporation of electron 
correlation in wavefunction methods result in algorithms with computational costs 
that scale badly with the number of basis functions. Hence they become 
unsuitable for molecules with many hundreds of atoms. An interesting alternative 
to wavefunction methods was born from the ideas of Thomas [2] and Fermi [3]. 
They suggested the electronic density instead of the wavefunction as basic 
ingredient for electronic structure calculations. However, the Thomas-Fermi 
model failed to give quantitative results of the shell structure of atoms or the 
bonding in molecules [4-6] among other drawbacks. Nevertheless, it established 
an interesting alternative to wavefunction calculations. Further works by Dirac [7] 
as well as Wigner and Seitz [8, 9] improved the model by introducing a local 
expression for the exchange potential. 

Several years later, Slater introduced the idea of approximating the Hartree-Fock 
exchange operator by an average local potential [10] based on the free-electron 
gas model. The result is an exchange potential expressed solely in terms of the 
electron density (


r ) . Using a different derivation, Gaspar [11] obtained the 

same 
1

3 ( )r 
 form of Slater’s expression but with a pre-factor of 2/3. This pre-

factor was a topic of debate for many years. Further development by Slater and 
Johnson resulted in the so-called Xα methodology [12], a self-consistent field 
(SCF) methodology using the muffin-tin approximation and the multiple-
scattering method [13, 14]. Even though this methodology was developed mainly 
for solid-state physics applications, it started to be applied to molecules, building 
a bridge between solid-state physics and chemistry [15]. 

In the sixties of the twentieth century, along with the Xα development, another 
theory arose from the ideas of Thomas and Fermi. With the formulation of the 
Hohenberg-Kohn theorems [16], a solid theoretical framework for density 
functional theory (DFT) was given. Although this turned DFT into an exact 
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theory, the missing knowledge of the form of the universal Hohenberg-Kohn 
functional hampered direct applications. In the pioneering paper of Kohn and 
Sham [17] in 1965 this obstacle was circumvented by the introduction of an 
artificial non-interacting reference system. Even though the here appearing 
exchange-correlation functional is also unknown, its approximation turned out to 
be much easier as for the Hohenberg-Kohn functional due to the reduced kinetic 
energy dependency (in fact, the kinetic energy contribution is often completely 
neglected in exchange-correlation functionals). 

Computationally, the Kohn-Sham method resembles the well-studied Hartree-
Fock method. The Kohn-Sham equations can be cast in a similar matrix form as 
the Roothan-Hall equations [18, 19]. Therefore, many algorithms from Hartree-
Fock wavefunction calculations can be used in Kohn-Sham calculations. In 
particular, the linear combination of Gaussian type orbitals (LCGTO) 
approximation can be used in Kohn-Sham density functional theory calculations. 
As a result, many, but not all, molecular integrals can be either calculated 
analytically or reduced to the calculation of an incomplete gamma function [20]. 
In addition, the use of Gaussians as basis functions allows the implementation of 
recurrence relations for the molecular integrals, which permits the construction of 
efficient algorithms for their calculation. 

Obviously, there are differences between the Hartree-Fock and the Kohn-Sham 
methods. The most noticeable one is the treatment of the non-classical 
interactions between electrons. While the Hartree-Fock method includes only 
exchange (which is treated exactly), Kohn-Sham calculations usually include both 
exchange and correlation but, in the vast majority of cases, with an approximate 
exchange-correlation functional. This term usually requires numerical integration 
techniques that are not needed in LCGTO Hartree-Fock methods. Even though 
linear scaling algorithms for numerical integration are well established they 
usually come with large prefactors and, therefore, represent computationally 
demanding tasks. 

Since computational studies of biological systems have become much more 
frequent in the last decades and the computational power has grown at a 
considerable pace, the design and implementation of efficient algorithms to boost 
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the introduction of new studies on the quantum chemistry field and exploit the 
increased hardware performance is mandatory. This is of utmost importance for 
the kind of studies required for an accurate determination of molecular structures 
and properties, in which electronic structure calculations are the most reliable 
method to achieve such determinations. As part of the deMon2k developers group 
we present here a new methodology to improve the computational efficiency of 
the code, paving the way to enlarge system size and simulation time in ab-initio 
molecular simulations. Then, a couple of case studies are shown encouraging the 
importance of an efficient implementation of electronic structure methodologies: 
the search for a coordination model of the prion protein that matches experimental 
data and the importance of considering dynamic effects for the prediction of the 
chemical shifts of glycerol. 

1.2. Auxiliary Density Functional Theory 

The fundamental approach for all-electron first-principles quantum chemistry 
calculations in deMon2k is the so-called auxiliary density functional theory 
(ADFT), which uses fitted electronic densities to reduce the formal scaling of the 
standard Kohn-Sham methodology. It is based on the works by Baerends et al. 
[21], Sambe and Felton [22], Dunlap et al. [23] and Mintmire and Dunlap [24] 
who introduced the so-called variational fitting of the Coulomb potential (VFCP) 
to reduce the computational cost of the calculation of Coulomb interactions 
between electrons. In deMon2k different Gaussian type functions are used to 
expand the Kohn-Sham density and the fitted density. For the Kohn-Sham density 
and orbitals Cartesian Gaussian type functions, also refered as Gaussian type 
orbitals (GTOs) are used. They are defined as, 

a(

r )  x  Ax ax y  Ay ay

z  Az az dke
 k


r

A 2

k

Ka

 , (1) 

where  , ,r x y z


 are the electron coordinates, 

A  Ax , Ay, Az  are the function 

center coordinates (which coincide with a nuclear center), k  is the exponent 
which defines the function extension, dk are contraction coefficients of a 
contraction degree Ka and (ax, ay, az) is a set of non-negative integer numbers 
related to the angular momentum index of the represented orbital i.e. the set 
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(0,0,0) represents a s function, (1,0,0) represents a px function, and so on. The 
basis functions, denoted by a or b, represent orbitals and define the electronic 
density as follows (for simplicity, all formulas refers to closed-shell systems), 

(

r )  Paba(


r )b(


r )

a, b
 , (2) 

where Pab is the density matrix. For the expansion of the fitted density Hermite 
Gaussian type functions are used in deMon2k [25, 26]. They are defined as, 

c (

r ) 


Cx







cx 
Cy








cy


Cz








cz

e c

r

C 2 , (3) 

where  , ,x y zC C C C


 are the function center coordinates (which coincide with a 

nuclear center),  c  is the exponent which defines the function extension and 

 , ,x y zc c c  is a set of non-negative integer numbers related to the angular 

momentum index of the function. These functions, denoted c  and d , are used to 

expand the auxiliary electronic density (

r )  through the following linear 

combination, 

   c
c

r x c r   , (4) 

where xc  are the corresponding density coefficients. Recently, the use of the 
auxiliary electronic density from the VFCP has been extended to the calculation 
of the exchange correlation energy [27], giving birth to the ADFT implementation 
in deMon2k. Even though the numerical integration of exchange-correlation 
energy and potential are not avoided in ADFT, the use of the auxiliary density 
reduces the computational effort substantially. In combination with efficient 
adaptive grid techniques [28] as implemented in the current version of deMon2k 
[29], the numerical integration of the ADFT exchange-correlation energy and 
potential is one order of magnitude faster than the corresponding calculation of 
the analytical three-center electron repulsion integrals. Thus, by its construction, 
ADFT permits large-scale parallel DFT calculations in reasonable times with the 
typical accuracy and reliability of ab initio methods. As a result, the 
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computational effort in the calculation of exchange-correlation terms is reduced. 
The consequence is that the Coulomb interaction calculation becomes once again 
the computational bottleneck in the ADFT Kohn-Sham methodology. 

In a closed-shell system, the ADFT energy is given by [27], 

 
, , ,

1

2ab ab ab c c xcd
a b a b c c d

E P H P ab c x x x c d E        ,
 

(5) 

where Hab is the core Hamiltonian matrix which contains all the one-electron 

quantities (such as electron kinetic energy and nuclear-attraction integrals) and 

Exc
   is the exchange-correlation energy, which depends on the auxiliary 

electronic density. The quantities in brackets represent interaction integrals 

between electrons, and they are discussed in more detail in the following section. 

2. THE ELECTRON REPULSION INTEGRALS BOTTLENECK 

The quantity of interest in this discussion is the three-center electron repulsion 
integral (ERI) 

1 1 2
1 2

1 2

( ) ( ) ( )
d d

a r b r c r
ab c r r

r r



    
  . (6) 

In the iterative ADFT self-consistent field (SCF) procedure to calculate the 

molecular energy these ERIs are required twice in every step. First for the 

determination of the density fitting coefficients in the VFCP using the equation 

xc  Gcd
1 ab d Pab

a, b


d
 , (7) 

where 1
cd

G  is an element of the inverse of the so-called Coulomb matrix 
Gcd  c d  with elements 

1 2
1 2

1 2

( ) ( )
d d

c r d r
c d r r

r r



   
  . (8) 
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Second, in the calculation of the ADFT Kohn-Sham matrix, 

Kab  Hab  ab c xc  zc 
c
 , (9) 

where zc  represents the exchange-correlation coefficients, 

1 [ ]c xccd
d

z G d v   . (10) 

Here vxc  denotes the exchange-correlation potential. In large-scale calculations, 
the ERI calculation becomes a bottleneck due to the combination of two issues: 

1.- The computation of ERIs require the calculation of a non-analytical integral 
known as the Boys function or incomplete gamma function [30], 

21 2

0
( ) dn Tt

nF T t e t  , (11) 

that in turn requires tabulation and interpolation to obtain the appropriate values 
to use in the basic ERI calculation. Basic ERIs are the starting point of a sequence 
of recurrence relations that finally obtain the desired ERI [31, 32]. 

2.- The number of ERIs grows rapidly with system size. In the ADFT 
implementation, the scaling of ERIs is formally NM, where N is the number of 
basis functions and M is the number of auxiliary functions. Although linear 
scaling can be achieved using integral screening techniques [32] this is only 
possible when the number of atoms is huge and the system is widely extended in 
space. Thus, large molecular systems that do not reach the conditions for taking 
advantage of linear scaling methods will suffer an ERI bottleneck due to a large 
number of integrals to compute. 

Although a molecular system is not large enough to present an ERI bottleneck due to 
the amount of integrals, it can present it due to the number of times ERIs have to be 
calculated. Good examples for this situation arise in first-principle molecular 
dynamics (MD) simulations. Born-Oppenheimer molecular dynamics (BOMD) 
requires repeated self-consistent field and molecular gradient calculations, which of 
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highly conserved octapeptide PHGGGWGQ (residues 60-91 in the human 

sequence), while the other two copper ions bind in the region spanning residues 

92-96 and 106-113 to the His96 and His111 [61-65]. Copper binds to each of the 

three coordination sites with different coordination modes, depending on pH and 

the relative concentration of copper in the protein [62, 64, 66, 67]. The octarepeat 

region has been the most studied binding site and, in fact, only a small copper 

complex of this region has been crystallized [68]. Also, theoretical studies have 

focused on the coordination of the copper ion in the octarepeat region using this 

structure as a model [44] while the electronic structure of the His111 and His96 

copper binding sites have been relatively unexplored in theoretical studies [69-

72]. Therefore, the lack of a crystal structure for the PrP(92-96) and PrP(106-113) 

binding sites makes the construction of appropriate structural models challenging 

and validation of different coordination models is crucial in order to compare 

experimental data with computed spectroscopic parameters [73, 74]. 

3.1. Methodology 

The study of the coordination modes to the PrP(92-96) and PrP(106-113) binding 

sites was done using the GGGTH amino acid sequence for the former and 

KTNMKHMA sequence for the latter peptide fragment, both with the N-terminal 

acetylated and the C-terminal amidated. Employing the deMon2k code [29], all 

models were optimized without any geometry constraints using the nonempirical 

generalized gradient approximation (GGA) exchange-correlation functional PBE 

[75], the double-ζ with polarization (DZVP) [76] orbital basis set and the GEN-

A2 auxiliary basis set [77, 78]. The complexes without explicit water molecules 

(vide infra) were characterized as stationary points by a frequency analysis at the 

same level of theory. Table 1 presents the technical details of the smallest copper-

peptide complexes of both systems. The optimized structures were used to 

compute the electron paramagnetic resonance (EPR) parameters, g and A tensors, 

and in some cases the UV-Vis absorption and circular dichroism (CD) spectra 

were simulated using time-dependent density functional theory; all spectroscopic 

data were calculated with the ORCA program [79] and compared with 

experimental data [73, 74]. 
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Table 1: Technical details of the smallest Cu(II)-PrP(92-96) and Cu(II)-PrP(106-113) complexes 

System Cu(II)-PrP(92-96) Cu(II)-PrP(106-113) 

Number of atoms 59 140 

Number of electrons 275 563 

Number of orbital 813 1409 

Number of auxiliary functions 1608 2674 

3.2. Results 

For the copper coordination to the PrP(92-96) fragment, four different coordination 

modes have been proposed experimentally in a pH-dependent process, which vary 

the number of deprotonated amides of the backbone [80, 81], as shown in Fig. 6. In 

the case of the coordination with four nitrogen atoms (4N coordination mode) no 

problems were found since the calculated data shows an excellent agreement with 

experiment in solution [73]. However, the coordination with three nitrogen atoms 

and one oxygen (3NO coordination mode) displays poor agreement with the 

experimental data. The way to achieve a better agreement was through adding water 

molecules to the solvation sphere of the copper ion and thus testing several 

structures, as shown in Fig. 7. The explicit solvation in the coordination site plays an 

important role, structural as well as electronic. In summary, after adding water 

molecules we can group the structures in two blocks, one with no explicit water 

molecules binding to the metal ion and another with explicit water molecules 

binding to the metal ion. In both cases the copper ion has a 3NO equatorial 

coordination mode. These structural changes are reflected in the CD and UV-Vis 

spectra, as shown Fig. 8, since the structures with a 3NO coordination mode with the 

oxygen atom from a carbonyl group, yield the same pattern of the experimental CD 

spectrum (B in Fig. 8); while the participation of water molecules in the copper 

coordination gives a different absorption pattern (D in Fig. 8). In this way it was 

possible to establish a structural model that reflects the experimental solution at pH 

values of 7 [73]. Finally, the characterization of the other two coordination modes, at 

low pH values (Fig. 6), was done with a few structures yielding also good matches 

with experiment [73]. 
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accommodate a sulfur atom as weak axial ligand [74]. The third group includes 
structures with two binding nitrogen atoms and its results are similar to those 
described previously i.e. without explicit water molecules there is a competition 
between the 2NOS and 2N2O coordination modes. But when explicit solvent 
molecules are taken into account, such competition disappears and the copper atom 
will be preferably coordinated with nitrogen and oxygen atoms on the backbone, as 
well as with the surrounding water molecules [74]. 

CONCLUSION 

Experimentally, it has been observed that copper coordination to the prion protein 
is a pH-dependent process. In this study, different coordination modes of copper 
binding to PrP(92-96) and PrP(106-113) were evaluated and, in both cases, the 
preferred equatorial coordination mode at pH 8.5 occurs with four nitrogen atoms, 
one from imidazole ring and three from deprotonated amides from backbone. At 
pH 7.0 one oxygen atom is coordinated instead of one deprotonated amide. The 
presence of explicit water molecules in the coordination sphere is an important 
factor in the determination of coordination modes since explicit solvation helps to 
improve the agreement with experimental values of UV-Vis absorption, CD and 
EPR. In the case of the PrP(106-113) fragment, the equatorial coordination of 
sulfur atoms from methionines is discarded since those structures are destabilized 
by the presence of water molecules and the poor agreement with the experimental 
data. Finally, structural models for the copper coordination to the prion protein at 
lower pH values were studied, showing that the metal ion is mainly bound to 
oxygen based ligands. 

 

Figure 10: Schematic representation of LBPA with stereospecific numbering (sn) of the glycerol 
carbons. 
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4. DFT-BOMD STUDY OF HIGH ENERGY CONFORMATIONS OF 
GLYCEROL AND THEIR CONTRIBUTION TO NMR CHEMICAL 
SHIFTS 

This section is adapted from [Ref. 86] by permission of the PCCP Owner 
Societies: http://pubs.rsc.org/en/content/articlelanding/2013/cp/c2cp43514d. 

Glycerol is the starting point for the synthesis of triglycerides and phospholipids 
in living organisms. It has been studied using a wide variety of techniques in 
solid, liquid and gas phases [87-97]. It has been shown that glycerol conformers 
are the precursors of the glycerophosphatidyl choline lipid framework conformers 
[98-100]. In addition, it is accepted that quantum mechanical (QM) calculations 
are necessary for a quantitative evaluation of the molecular energy of lipid 
structures, the determination of possible conformers [99] and for the calculation 
of spectroscopic properties such as NMR, as shown below. 

Interestingly, the most stable conformations of the isolated glycerol molecule and 
of the glycerol group in glycerophosphatidyl choline lipids are similar. It is also 
the case for the most stable structures of the bis(monoacylglycero)-phosphate 
lipid (formerly known as lysobisphosphatidic acid or LBPA) formed by two 
glycerol molecules bound to one phosphate group. This lipid is found in a small 
amount in all animal tissues (≤1%) (see Fig. 10). Unlike other phospholipids 
LBPA is only found in late endosomes where it constitutes approximately 17% 
mol of the membrane [101, 102] but its function is still a topic of research [101, 
103]. The 2,2'-dioleoyl isoform of LBPA spontaneously arranges in multivesicular 
liposomes if the liposome lumen has the same pH as the in vivo endosome 
forming structures similar to it [104]. Thus, it has been suggested that the 
phosphodiester functional group is attached to positions sn-1 and sn-1' instead of 
sn-3 which is a very different stereochemistry than the one observed in other 
animal glycerophospholipids (see Fig. 10). The in vivo synthesis of most 
glycerophospholipids proceeds, indeed, through the phosphorylation of glycerol 
in position 3, following the conventional stereospecific numbering (sn) [105]. 

This intriguing problem was tackled by calculating and analysing the structures 
and energies of the constituting blocks of the LBPA and its isomers, namely the 
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glycerol and glycerophosphate molecules [98]. This systematic study determined 
a preferred bis(glycerol)phosphate isomer determined by the preponderant 
glycerol conformer. In the case of the full LBPA molecule (including the oleoyl 
chains), the positions of the acyl chains determine different structures for the 2,2' 
and 3,3' LBPA isomers, but for both types the most stable conformations of LBPA 
glycerols are the same as in the isolated glycerol molecule (glycerol B () for the 
2,2’ and glycerol F () for the 3,3’). These various studies show how glycerolipid 
structures are strongly correlated with the structure and energetic properties of the 
glycerol precursor. 

NMR has been widely used by chemists and biochemists and, after the 
development of magic angle spinning (MAS), by solid state scientists to obtain 
spectroscopic fingerprints of atoms in different environments [106-109]. 
Consequently, NMR spectroscopy provides a sensitive probe for the electronic 
environment of nuclei in molecules. Correlations with bond/torsion angles, the 
presence of intra- or inter-molecular hydrogen bonds and polarization by the 
medium, to name only a few effects, have been established in a large variety of 
systems [101, 110-115]. In the case of complex systems, in particular 
biomolecules, NMR has been used for a long time to gather structural information 
at the atomic level. 

However, it is only recently that structure changes or fluctuations with time have 
been studied based on NMR experiments. Indeed, most biosystems exist as 
conformers in dynamic equilibria, and their functional properties cannot be 
described using only a static structure as determined by X-ray crystallography or 
even by a set of structures obtained from experimental nuclear magnetic 
resonance (NMR) constraints (taking into account the lower and upper limits of 
interatomic distances evaluated through experiment) [116]. For example, the 
existence and interconversion of three rotational isomers of phosphatidylcholine 
(PC) lipids has been proposed from NMR studies [117] where the rigidity of the 
glycerol backbone is utilized to interpret the NMR dipolar coupling data [118]. 
Also conformational fluctuations of proteins involving multiple conformers of 
different energies are now studied using NMR spectroscopy at various pressures 
[119, 120]. This new methodology provides different time-averaged NMR signals 
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with different pressures for structural changes within about 1 ms to 1 s, allowing a 
realistic description of low frequency protein motions. 

Underlining the importance of taking into account structural fluctuations, ranging 
from vibrations to conformational changes, NMR chemical shift calculations for 
molecules and solids have been combined recently with MD simulations for 
analyzing fast molecular motions, in particular those related to intramolecular 
changes. Although low frequency molecular motions are not yet within the reach 
of ab-inito BOMD, thus classical MD simulations have been used to study them 
[121]. In these recent studies, MD simulations are based on force field, semi-
empirical or ab initio methods. Among them, one can distinguish two different 
approaches: (i) use MD to generate the various possible conformations of the 
system and compare the obtained structures with those which have been proposed 
on the basis of experimental chemical shifts or coupling constants [122-124]; (ii) 
perform MD trajectories at a chosen temperature, extract a series of configurations 
(snapshots) at given time intervals for which the desired NMR parameters are 
calculated [125-130]. If the number of snapshots is large enough, averaging the 
calculated NMR values leads to a good representation of the experimental NMR 
spectrum. In addition, this method allows a quantitative description of the main 
conformational contributions to the system dynamics. 

The latter approach has been adopted to study the time evolution of the structure 
of glycerol and to analyze the contribution of its internal motions to the 13C NMR 
spectrum [86]. Thus, BOMD has been applied with forces calculated from density 
functional theory (DFT) calculating multiple trajectories to sample the 
configuration space of an isolated glycerol molecule. As stated before, glycerol is 
the in vivo first precursor of phospholipids and triglycerides and its rich 
conformational space is a determining factor for its efficient conduction in the 
channels of transport proteins or phosphorylation enzymes where it has been 
located by X-ray crystallography [131-133]. 

The results were compared with experimental spectra of solutions of glycerol 
measured at room temperature as well as at 50 °C and 80 °C. In this range of 
temperatures, which can be explored by magnetic measurements, glycerol is in the 
liquid state. Large chemical shift fluctuations characterize the sampling of the 
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shielding tensors [136], as implemented in the deMon2k program [29]. 
Optimizations and BOMD simulations were performed with the revised PBE 
exchange [137] and LYP correlation [138] functionals. An empirical correction 
for dispersion [139] was included. Double zeta and triple zeta plus valence 
polarization (DZVP and TZVP) basis sets optimized for DFT calculations [76] 
were employed. Automatically generated auxiliary function sets containing up to 
d functions were used to fit the density [78]. The exchange correlation potential 
was numerically integrated on an adaptive grid [28] setting the accuracy to 10-6 
a.u. 

4.2. Born-Oppenheimer Molecular Dynamics 

In BOMD simulations the electronic structure is converged at every time step, which 
is necessary when snapshots are used to calculate NMR properties. To facilitate 
conformer sampling the BOMD simulations were performed at 400 K. This 
temperature is within the liquid phase of glycerol which melts at 291 K and boils at 
563 K. Its magnetic properties in the gas phase have not been studied due to the high 
boiling temperature. The NMR spectrum of a dilute solution of glycerol in D2O has 
been measured at 355 K, a temperature slightly lower than that used here (400 K). In 
our NVT simulations the temperature was controlled using the Nosé-Hoover 
thermostat [140, 141] with 3 chains and coupling frequency set to 100 cm-1. The 
velocity Verlet algorithm was used with a time step of 1 fs to propagate the nuclear 
coordinates. Temperature equilibration was reached within 3 ps for all trajectories. In 
order to test the basis set effects on the BOMD and NMR results, two sets of 
trajectories have been recorded, using double zeta and triple zeta plus valence 
polarization basis sets, namely DZVP and TZVP, respectively. Total trajectories of 
2.25 ns (DZVP) and 3.4 ns (TZVP) were obtained from multiple trajectories with 
different starting structures, i.e. the optimized A (), B (), C (), D (), E () 
and F () backbone conformers that are illustrated in Fig. 11, omitting the hydrogen 
atoms for clarity. To be consistent with previous works we use a double 
nomenclature according to Refs. [95 and 101]. 

4.3. NMR Chemical Shift Calculations 

The 13C NMR shielding calculations of glycerol were performed in the scheme of 
the gauge including atomic orbitals (GIAO) [142]. Based on common experience 
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for NMR calculations, the PW91 functional [143] was used in combination with 
the extended basis set aug-cc-pVDZ [144] in order to ensure a sufficient number 
of s functions to correctly describe the electronic environment around the nuclei. 
It also includes polarization functions, as recommended for NMR calculations 
[145]. However, test calculations (see Table 2) with a larger orbital basis, aug-cc-
pVTZ, lead to a decrease of the 13C nuclear shieldings by about 10-14 ppm, 
whereas 13C shielding of the tetra-methylsilane (TMS) reference decreases by 
only 8.4 ppm. This effect yields a general increase in the 13C chemical shifts by 
about 2- 6 ppm with respect to the aug-cc-pVDZ calculated values. This finding is 
in agreement with benchmark calculations comparing mean absolute errors of 13C 
shieldings of organic molecules calculated with these two augmented DZ and TZ 
bases and different functionals [136]. Therefore, we chose to use the aug-cc-
pVDZ basis for our NMR shielding calculations. It is important to note that 
choosing another functional or a smaller basis will only displace the absolute 
chemical shifts but will keep the relative shift values between the carbon atoms 
(2-1 and 2-3) almost constant with deviations less than 1 ppm. The 
augmented Dunning basis set was used in combination with the (GEN-A2*) 
auxiliary function set that contains up to g functions. 

Table 2: NMR isotropic 13C shielding of the optimized conformers using aug-cc-pVDZ and aug-
cc-pVTZ (PW91 method); the corresponding TMS ref values are 187.6 and 179.4 ppm, 
respectively 

Basis 
set 

Property A () B () C () D () E () F () 

aug-cc-
pVDZ 

� 

� 

 

 

 

120.1 

109.7 

121.2 

10.5 

10.7 

121.4 

110.5 

121.2 

10.9 

10.7 

117.4 

106.2 

119.6 

11.2 

13.4 

123.6 

110.5 

122.4 

13.1 

11.9 

112.1 

114.3 

112.8 

-2.2 

-1.5 

112.2 

114.6 

116.9 

-2.4 

-2.3 

aug-cc-
pVTZ 

 

 

 





107.4 

98.3 

109.0 

9.1 

10.7 

108.9 

99.0 

109.3 

9.9 

10.3 

105.0 

94.6 

107.4 

10.4 

12.8 

111.4 

99.0 

110.7 

12.4 

11.7 

101.9 

100.7 

100.4 

1.2 

-0.3 

102.1 

100.6 

104.5 

1.5 

3.9 
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The 13C isotropic shieldings  were calculated at every 210 time-steps and the 

values obtained for each glycerol carbon were averaged over the total time (2.25 

ns and 3.4 ns). The corresponding averaged chemical shifts, 1 and 3 for the 

primary carbons and 2 for the secondary carbon, were obtained using the 

expression i = ref - i, where ref is the shielding for the TMS reference 

compound. The ref value (186.9 ppm) was also calculated from averaging 

snapshot values over a 400 K trajectory with a total time of 500 ps. 

Dividing by two the DZVP simulation time (sampling over 1.12 ns) and keeping 

the same time interval between the selected snapshots leads to changes of about 

0.5 ppm for the averaged shieldings. The averaged shielding accuracy is also 

dependent on the basis set used for the dynamics. Indeed, averaging the  values 

of the TZVP trajectory over 2.25 ns leads to a  of 0.5 ppm between the two 

primary 13C shieldings that are experimentally indistinguishable, instead of 0.1 

ppm obtained for the DZVP trajectory. In fact, extension of the TZVP trajectory 

to 3.4 ns reduces  to 0.1 ppm. 

4.4. Transition State Calculations 

Because conformer interchanges have been observed along the BOMD 

trajectories the transition states for these rearrangements were located. To this end 

a saddle interpolation [146] between relevant pairs of the six minima backbone 

configurations were performed. Before starting the saddle interpolation the 

glycerol backbones (C and O atoms) were aligned to maximum coincidence 

[147]. Once the saddle interpolation converged, the resulting coordinates were 

used as the starting point for a local transition state optimization by the uphill trust 

region method [148, 149]. This optimization was initialized with a calculated 

starting Hessian to guarantee a correct eigenvalue spectrum. The transition states 

found were verified by frequency analyses. To ensure that these transition states 

really connect the desired backbone conformers the intrinsic reaction coordinate 

(IRC) were calculated [150]. The transition state structures of the six most 

relevant backbone rearrangements are illustrated in Fig. 12, omitting hydrogen 

atoms for clarity. The corresponding energies are reported in Table 3. 
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d2  R 'i Ri

2

i1

N

  (15) 

and c is an upper bound of d which serves as a normalization constant and is 
defined as: 

2 22

1 1

2 ' 2
N N

i i
i i

c R R
 

    (16) 

This definition ensures that h always lies between 0 and 1, with 1 denoting perfect 
matching of the two considered structures. For the similarity index calculations as 
well as for the automatic alignment procedure [147] only the coordinates of the 
six backbone atoms of the glycerol were considered. These coordinates are stored 
for the structural mapping in {Ri} and {R’i}. This procedure allows an automatic 
quantitative matching, more convenient than using dihedral angle values [152]. 
The similarity index values have been used to classify the six backbone 
conformers and assign all snapshots into six separate conformer sets (for DZVP 
and TZVP trajectories). In a further analysis of each of these conformer sets we 
identified transition state structures with a larger similarity index than the 
corresponding conformers. In this way, subsets of conformers are created that 
consist of F⇄D, F⇄B, A⇄B, B⇄C, A⇄C and D⇄C transition state structures 
(see Fig. 12). Here the nomenclature X⇄Y indicates that the similarity index for 
the X⇄Y transition state structure is larger than for the X or Y conformer 
structure (PES minimum) for the given snapshot. Of course, the X⇄Y transition 
state label is valid for both, X to Y and Y to X, conformer interchanges. 

4.6. Experimental NMR Spectra 

In order to estimate the impact of the various assumptions made in this study, we 
have recorded the 13C NMR spectrum of glycerol at different concentrations and 
temperatures using a Bruker DPX 400 spectrometer. Anhydrous glycerol (1,2,3 
propanetriol) >99.5% from Sigma was used in D2O solutions. Two very distinct 
molar concentrations were tested, namely 0.12 and 0.01, in order to verify if 
glycerol oligomers could be present, following indications of Raman spectra 
measured in these concentration conditions [91]. Since BOMD trajectories were 
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obtained at a temperature about 100 °C higher than standard room temperature, 
we have used the Bruker variable temperature setting. In order to be in keeping 
with our setting (spinner and magnetic probe) and below the D2O boiling point, 
we have maintained a stable temperature of 80 °C. 

4.7. Optimized and Dynamical Structures of Glycerol 

The structural study of glycerol conformers has been approached in the literature 
through force field MD and ab-initio calculations of the potential energy surface 
(PES). So far only PES minima were considered using a variety of computational 
methods. Most ab-initio studies focus on the different backbone conformers (see 
Fig. 11) [87, 98, 153]. As shown in this figure, four torsion angle values are 
necessary to define the six backbone conformers. Taking into account the possible 
O-H orientations will imply many more minima [154]. If one considers only the 
OC-CO-CO backbone (Fig. 11), there are possible mirror images for the six 
conformers, due to the C-C-C mirror plane and the perpendicular C2 axis. These 
mirror images are usually not distinguishable from each other and, therefore, 
conformer types will be discussed rather than conformers. The relative energies of 
these six conformer types with the methodology used here were already partially 
reported in [101] and are given in Table 4. 

Table 4: Relative energies E and free energies G (kcal/mol) of the six most stable glycerol 
conformers obtained with DZVP and TZVP basis sets, respectively. Corrections for zero point 
energy and thermal population are included in E 

Isomer E (DZVP) G (DZVP) E (TZVP) G (TZVP) 

Isomer A ( 2.4 0.9 0.9 0.0 

Isomer B () 1.9 1.0 1.1 0.7 

Isomer C () 4.3 2.7 3.3 2.2 

Isomer D () 3.5 1.9 2.2 1.4 

Isomer E () 4.5 3.2 4.1 3.3 

Isomer F () 0.0 0.0 0.0 0.5 

The ab-initio electronic structure calculations lead to the general consensus that 
the backbone conformers of A (), B () and F () types are most stable. 
However, their relative energy differences are quite sensitive to the methodology 
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and, in particular, to the basis set. Based on ab-initio electronic structure 
calculations, two studies have reported Boltzmann population analyses of gaseous 
glycerol [153, 154]. It was shown that the use of an aqueous solvation model has 
no significant effect on these populations [154]. In the first study, based on DFT-
B3LYP calculations of 13 glycerol conformers, Chelli et al. found a 
predominance of A () (~ 40%) and B () (~ 45%) conformers, accompanied 
by a small fraction of F () (~ 11%), in the temperature range between 298 and 
498 K [153]. A more extended Boltzmann population analysis that included 126 
conformers of glycerol [154] led to a more spread out distribution among the six 
backbone conformer types. Only the E () conformer type was negligible at 
around 2%. The A (), C (), D () and F () conformer types appeared with 
contributions between 10% and 20% whereas the dominant B conformer type 
reaches a contribution of 30% and more. These analyses were based on DFT and 
post Hartree-Fock electronic structure calculations and kept their qualitative form, 
i.e. negligible E () contribution, dominant B ( contribution and a 
homogeneous distribution of the other four conformer types between 10% and 
20%, independent of the electronic structure method used. 

In addition, classical MD simulations have been performed at 300 K or 400 K for 
gaseous, pure liquid or hydrated glycerol, leading to diverse conclusions about the 
most populated conformer types [155-157]. The main difficulty of classical MD 
in this particular case is associated with the validity of the backbone torsion 
parameters which govern the conformer interchanges. This problem has also been 
reported for peptide backbone conformers [123, 158]. 

In order to combine the needed reliability of ab-initio glycerol calculations with the 
advantages of MD sampling we performed extensive BOMD calculations. To relate 
the BOMD trajectory snapshots to the six conformer types and also to the 
corresponding six most relevant backbone transition states (see Figs. 11 and 12), the 
above described mapping algorithm was used. The barrier heights of the 
corresponding conformer type interchange reactions are given in Table 3. The results 
of these analyses are presented in Table 5 for the DZVP and TZVP BOMD 
simulations. The conformer populations obtained from mapping all snapshots to 
every conformer type are gathered in Table 5. This total conformer population is 
then analyzed in terms of subsets of snapshots mapping the conformer minimum 
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or/and possible transition state structures. Table 5 provides some very interesting 
insight into the dynamics of the glycerol molecule: (i) conformer types (Table 4) B 
( and F () are the most populated along our BOMD trajectories as expected 
considering its relative energies; (ii) structures corresponding to the transition state 
type for the interchange between B ( and F () show substantial population with 
both basis sets. This F-B transition state population decreases substantially the F () 
minimum participation; (iii) The population of the A () conformer type is 
surprisingly small in both BOMD trajectories considering that this conformer type is 
energetically similar to the B (type; and (iv) increasing the basis set used for 
BOMD enlarges the spread of the conformer type populations but keeps the B ( 
and F () types preponderant. 

Table 5: Distribution of the BOMD trajectory snapshots (DZVP and TZVP) among the conformer 
sets and subsets (minimum and TS types). The reported populations are given in %. See text for 
detail and TS nomenclature 

Conformer sets 
DZVP 

Polulations 
TZVP 

Populations 

 Subset Total Subset Total Subset 

A 

Minimum 

A⇄B 

A⇄C 

7.74 
6.93 
0.56 
0.25 

9.10 
7.74 
0.30 
1.06 

B 

Minimum 

A⇄B 

F⇄B 

34.72 
34.34 
0.38 

- 
31.82 

31.37 
0.43 
0.02 

C 

Minimum 

A⇄C 

B⇄C 

D⇄C 

2.68 

2.11 
0.17 
0.12 
0.40 

12.38 

7.36 
0.27 
0.85 
3.90 

D 
Minimum 

F⇄D 
5.84 

4.71 
1.13 

17.61 
16.05 
1.56 

E Minimum 0.89 0.89 1.41 1.41 

F 

Minimum 

F⇄B 

F⇄D 

48.13 
38.19 
9.94 

- 
27.67 

19.38 
8.09 
0.20 

Obviously, these BOMD glycerol conformer type distributions are different from 
those given by Boltzmann population analyses. Neither the BOMD nor the 
Boltzmann distributions are exceptionally sensitive to the underlying electronic 
structure methods. It seems, thus, likely to attribute this difference to the finite 
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hand, the gas phase microwave study of Maccaferri and co-workers [159] yields a 
mixture of B ( and F ( glycerol conformer types. This shows that the 
experimental results are sensitive to their interpretation. In fact, the structure 
assignment from the microwave study is based on ab-initio geometries and 
measured rotational transitions [159]. In microwave experiments, rotational 
constants are properties that quantify the rotational energies directly related to 
conformer interchanges, whereas electron diffraction and IR spectra concern 
predominantly higher energy spectrum domains. This may explain that the 
agreement of the microwave results with BOMD distributions is remarkable. 
Moreover, the energy splitting between the two conformer types of 0.62 kcal/mol 
from this microwave experiment (taking into account the most stable F () 
conformer) is in good agreement with the calculated Gibbs energy splitting of 1.00 
and 0.20 kcal/mol with the DZVP and TZVP basis, respectively (Table 4). 

The agreement between the gas phase microwave and BOMD conformer 
distribution, in particular the very low contribution of the A conformer in contrast 
to electron diffraction and IR populations, suggests that the observed kinetic 
stabilization at the ns time scale in the BOMD simulations is also important on 
much longer time scales. A necessary prerequisite for this assumption is that all 
relevant structure rearrangements occur along our BOMD trajectories. To analyze 
this in more detail, Fig. 13 depicts the structural fluctuations along a 550 ps 
trajectory cutout of the DZVP BOMD. The trajectory cutout starts with a B 
(conformer type. The upper part of Fig. 13 shows the variation of the two O-
C-C-C backbone torsion angles (1and 3  in Fig. 11), whereas the lower part 
depicts the corresponding fluctuations in the six non-bonded O···H distances 
between the three OH groups. Fig. 13 shows that the non-bonded O···H distances 
are rapidly exchanging due to the rotation of the OH groups around the C-O 
bonds. As expected, these rotations are much faster than the backbone 
conformational changes as the comparison of the top and bottom parts of Fig. 13 
immediately reveals. In the depicted trajectory cutout of 550 ps one finds around 
15 backbone conformational changes which indicate a glycerol conformer type 
interchange roughly every 40 ps. The various conformer types along with the B to 
F transition state, as obtained from the trajectory mapping, are also marked in the 
top part of Fig. 13. From this assignment and the fluctuations in the non-bonding 
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OH distances (see bottom of Fig. 13) one finds that OH rotations are hindered, i.e. 
O···H exchanges occur less frequently, in the F (conformer type structure. On 
the other hand, conformer backbone rearrangements are always accompanied by 
large O···H exchanges. This suggests that the C-O-H degrees of freedom are 
coupled to the backbone torsion angles in order to lower energy barriers. 

4.8. NMR Calculations 

To further support the hypothesis that the BOMD samplings yield glycerol 
conformer type distributions similar to the ones at macroscopic time scales the 13C 
chemical shielding was calculated from the BOMD. Because relaxation times in 
NMR spectroscopy are of the order of ms to s we only can expect a fair match with 
experiment if the sampling covers a similar configurational space. Averaging the 
chemical shieldings yields the following chemical shifts : for C1, C3 (primary 
carbons) 71.0, 71.1 ppm (DZVP trajectory) and 69.0, 69.0 (TZVP trajectory); for C2 
(secondary carbon): 79.3 ppm and 79.1 for the DZVP and TZVP trajectories, 
respectively. In Table 6 these values and the relative  (1-2, 3-2) chemical shifts 
are compared with experimental data reported in the literature [96, 97, 160-162]. 

Table 6: Measured and calculated glycerol chemical shifts in ppm 

1 2 1-2 = 3-2 Conditions Refs. 

Experimental values 

63.0 72.4 9.4 DMSO-d6, room temperature [149] 

64.0 73.5 9.5 near room temperature [154] 

66.9 76.4 9.5 D2O, 50 °C [150] 

66.0 75.0 9.0 Solid state [155] 

62.0 71.7 9.7 Olive oil, 35 °C [151] 

62.34 71.90 9.56 conc. 0.12 molar in D2O, 25 °C [124] 

62.34 71.93 9.59 conc. 0.01 molar in D2O, 25 °C [124] 

63.54 72.83 9.29 conc. 0.12 molar in D2O, 80 °C [124] 

63.57 72.92 9.35 conc. 0.01 molar in D2O, 80 °C [124] 

Theoretical values 

71.0 79.3 8.3 
DZVP Dynamics, 127 °C, 
NMR aug-cc-pvDZ/PW91 

[124] 

69.0 79.1 10.1 
TZVP Dynamics, 127 °C, 
NMR aug-cc-pvDZ/PW91 

[124] 
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It is found that the calculated relative chemical shifts are in good agreement with 
experimental values, whereas the absolute chemical shifts improve going from 
DZVP to TZVP BOMD simulations. It is well known that the methodology used 
for the calculation of nuclear magnetic shieldings is sensitive to the basis set 
extension, but this result shows that the method used for the description of the 
structures as a function of time is also important. The calculated absolute  values 
are shifted by about 5 ppm with respect to experiment, which corresponds to the 
expected error range of the methodology used here for the molecular 13C  with an 
external reference [136]. 

The spread of the experimental chemical shifts is about 4.8 ppm, whereas that of 
the relative shift,  is only 0.3 ppm. The effect of a temperature increase from 
room temperature to 400 K on  values can be estimated at about 0.5 ppm. The 
average of the  values of the two dynamics, 9.2 ppm, is in close agreement with 
experiment. It is important to note that chemical shift values are not affected by 
the molar concentration of glycerol in D2O. In fact, Raman studies of glycerol in 
diluted D2O solutions show that D2O breaks dimers and higher oligomers of 
glycerol and thus involves mainly glycerol monomers, in particular for the lowest 
dilution of 0.01 [91]. 

In Table 7, the NMR shieldings calculated for the optimized structures of the 
glycerol conformers are compared with the corresponding BOMD average values 
associated with the reference structures (DZVP trajectory). This BOMD 
averaging has been performed using all the trajectory snapshots recognized as 
relevant to the different backbone conformer types and transition states by the 
mapping algorithm (Table 5). The first interesting effect of the dynamics is to 
provide very similar  values to the two primary carbons, andat least for 
the stable conformers, since their difference has become less than the width of the 
observed signal (0.5 ppm). This benefit from the dynamics also shows that our 
trajectory time-lengths are long enough to converge this NMR property. The 
coincidence of the two primary carbon signals, averaged over all dynamical 
structures, validates per se the calculated population statistics. The second 
interesting effect of dynamics observed in Table 7 is the general expected 
decrease of carbon shielding. This effect, particularly pronounced for C2, is due to 
the sampling of higher energy vibrational structures with fluctuations of bond 
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lengths as well as bond and torsion angles which decrease the shieldings of the 
carbon nuclei with respect to structures at T=0 K. However, even if the dynamical 
representation of the 6 PES minima improves the calculated 13C shieldings with 
respect to the static values, it is necessary to include a sampling of all structures 
present in the dynamics, in particular, those gathered in the TS subsets (Table 5) 
to get a realistic description of the spectrum. This remark is in agreement with 
conclusions from a previous dynamical study of 13C chemical shifts in solid 
peptides that also reports very large 13C chemical shift fluctuations and shows 
how much accuracy of the 13C shifts can be improved when averaging these 
fluctuations over a large time scale (5s) [127]. 

Table 7: Comparison of calculated NMR isotropic shielding (PW91/aug-cc-pvDZ) of optimized 
conformers (revPBE/DZVP) with averaged BOMD results (revPBE/DZVP). All values are in ppm 

 Property A () B  C () D () E () F () F⇄B 
TS 

Optimized 
Structures 

 








120.1 
109.7 
121.2 
10.5 
10.7 

121.4 
110.5 
121.2 
10.9 
10.7 

117.4 
106.2 
119.6 
11.2 
13.4 

123.6 
110.5 
122.4 
13.1 
11.9 

112.1 
114.3 
112.8 
-2.2 
-1.5 

112.2 
114.6 
116.9 
-2.4 
-2.3 

112.1 
120.7 
115.0 
8.6 
5.7 

BOMD 
Averaged 








118.6 
105.1 
118.4 
13.5 
13.3 

118.8 
107.0 
118.6 
11.8 
11.6 

116.1 
105.2 
116.0 
10.9 
10.8 

120.8 
108.2 
120.8 
12.6 
12.6 

116.9 
114.3 
116.5 
2.6 
2.2 

113.3 
108.9 
113.0 
4.4 
4.1 

114.0 
108.8 
113.2 
5.2 
4.4 

CONCLUSION 

A combined BOMD/NMR study of glycerol allows one to gain more insight into 
the conformer distribution of this molecule in the gas phase. The analysis of the 
BOMD trajectories shows that B () and F () conformer types are most 
populated. This is in qualitative accordance with experimental gas phase 
microwave studies [159]. This agreement can be interpreted such that the 
observed dynamical effects at the ns time scale in the BOMD simulations are also 
important on much longer time scales. To further support this hypothesis the 
NMR spectra of glycerol have been studied experimentally and theoretically. The 
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experimental NMR studies show that the molar concentrations of glycerol in D2O 
have no effect on the chemical shift values. This is in perfect agreement with 
corresponding Raman studies [91] which show that D2O breaks dimers and higher 
oligomers of glycerol and thus involves mainly glycerol monomers. Thus, one can 
safely assume that experimental NMR results indeed refer to the monomer. As a 
consequence, the good (absolute values) and very good (values) agreement 
between the experimental and theoretical NMR results can be seen as further 
evidence for our hypothesis that the ns BOMD distribution is indeed similar to the 
ones on much longer time scales (ms to s). Quite surprisingly, a considerable 
amount of F (type conformer in the BOMD trajectory (see Table 5) is 
compatible with very good values (see Table 6) which is fundamentally 
different to values from optimized structures (see Table 7). This, and the large 
amount of other minima structures that entered the BOMD NMR calculations 
indicate that accurate prediction of NMR spectra of flexible molecules like 
glycerol requires the incorporation of all dynamical configurations. 

In conclusion, one finds from ns BOMD simulations a glycerol conformer 
distribution that is governed by kinetics and, therefore, different from the 
corresponding Boltzmann distributions. Comparison with experimental gas phase 
microwave results and D2O chemical shifts suggests that this distribution is stable 
on much longer time scales (ms to s) than the one (ns) used in the BOMD 
simulations. 
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Abstract: Computer simulations in lipid bilayers research has become prominent for 
the last couple of decades. As computational resources became more available to the 
scientific community, simulations play an increasingly important role in understanding 
the processes that take place in and across cell membranes. The scientific interest is 
strictly related to the Biological importance of the Biomembranes, which act as barriers 
separating cell’s internal environment from the external one. Membranes are selectively 
permeable, and thus they actively participate in the movement control of compounds 
into and outside cells. These membranes have an heterogeneous complex composition 
and they include many different lipids together with proteins, steroids, carbohydrates 
and other membrane-associated molecules. Each of these compounds are involved in a 
great number of cellular processes and thus, membranes exist as dynamic structures. As 
a consequence, the understanding of biomembrane functioning requires the knowledge 
of chemical-physical behavior of lipid bilayers and it represents a great challenge in 
biophysical and medical sciences. 

In the last decades, molecular dynamics (MD) simulations have become one of the most 
useful tool in the in silico investigations of molecular structures; in fact, such 
computations provide structural dynamical information which is essential and hardly 
obtained by experimental methods; furthermore, it furnishes a system real-time imaging 
at atomistic-level resolution. In this chapter, we want to point out the recent advances in 
computer simulations in the field of lipid bilayers and proteins-lipid bilayers systems 
during the last few years, by covering several selected subjects such as state of art in ad 
hoc force fields’ development, Cholesterol induced effects on structure and properties 
of the bilayer, mixed composition lipid matrix, and biomolecular application of coarse-
grained models. 
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INTRODUCTION 

Molecular processes regulated by Biomembranes are critical for living cells’ 
normal function. The features of a cell membrane are mainly determined by a 
lipid bilayers. These membranes have an heterogeneous complex composition and 
they include many different lipids together with proteins, steroids, carbohydrates 
and other membrane-associated molecules, involved in a great number of cellular 
processes. Thus, Membranes exist as dynamic structures: they are selectively 
permeable, and they actively participate in the movement control of compounds 
into and outside cells. Indeed, observing the great diversity in the structure and 
composition of biological membranes, the importance of lipids’ nature in many 
cellular processes is coming out. 

More in general, main differences in the lipid molecular structure reside in the 
hydrophilic polar head-groups and in the lipophilic hydrocarbon chains of the 
fatty acids (FAs). The most abundant phospholipid in animal and plants is 
phosphatidyl-choline (PC), which is a key building block of membrane bilayers. 
Beside it, cholesterol (Chol) can be found as an essential component of 
mammalian cell membrane. This steroid plays an important role in formation of 
heterogeneities (known also as rafts) which are supposed to be responsible for cell 
signaling. Thus, it is clear that the understanding of biomembrane functioning 
requires the knowledge of physical-chemical properties of lipid bilayers and it is 
one of the greatest challenging problems in biophysical and medical sciences. 

Moreover, the elucidation of the complex interactions between proteins and 
membrane, represents a current intriguing challenge in the field of structural biology. 

Indeed, the spectacular growth of membrane simulations in the last 10-15 years 
had led to a better overall picture of membrane systems at atomic resolution, 
when the only employment of experimental methods is often insufficient. Thus, 
the usage of high-performance computing (HPC) allows investigation of complex 
membrane molecular systems using powerful molecular modeling techniques 
such as molecular dynamics (MD) (both atomistic MD and coarse grained CG-
MD). In particular, full atoms MD simulations reproduce the motions of each 
atom in the simulation, by using an empirical potential energy function and it 
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provides molecular atomistic interactions and energetic details which are 
generally hard to obtain from experiments. Thus, it represents a critical additive 
information for the full comprehension of membrane macroscopic behavior. 

The timeline for the first attempts of computer simulations of model bilayers with 
atomistic resolution might begin in the 1980’s with the early simulation of a solvent-
free decanoate lipid bilayers [1-3] and with water between rigid lipid headgroups [4] 
which was followed in the 1990’s by simulations of fully hydrated bilayers formed 
by lipids generally found in biological membranes, with both phospholipids and 
water represented with atomic details [5, 6]. Later on, the development of HPC 
power has made feasible simulations of more huge complex systems, with increased 
size. At present, simulation of hundred hydrated lipids for a time length of 50-100 
ns, is considered routinely and can be easily extended for a much longer simulation 
time (1 μs-1ms) [7, 8]. These achievements led to the construction of a large set of 
model bilayers and micelles differing in lipid composition. Such models are used to 
study different classes of membrane-active proteins (ion channels, GPCR receptors) 
and peptides (such as toxins, antimicrobial and fusion peptides) [9]. 

Of course, since the amount of works on simulations of lipid membrane systems 
has grew up significantly, many reviews related to this topic appeared in the past 
decade [10-29] and more recently [30-48]. In this chapter, we want to point out 
the recent advances of in silico simulations of lipids bilayer and proteins-lipid 
bilayers systems, in different selected subjects such as development of the force 
fields for lipid bilayer simulations, application of both atomistic simulations and 
coarse-grained models, also providing state-of-art current computational 
protocols to settle out the simulations. More in detail, we highlight those cases 
where simulations are used in conjunction with experimental techniques, covering 
topics such as simulations including the Cholesterol effect, membrane protein 
simulations and simulation involving relevant changes in basic bilayers structure 
(mixed composition bilayers or salt effect prediction) [49-51]. 

FORCE FIELDS FOR LIPID BILAYERS SIMULATIONS 

As papers describing simulations of lipid bilayers emerged [1-6], it was 
immediately clear that much work needed to be done to reach the desiderate 
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accuracy. A critical component for this aspect has been the development of a 
reliable force field (FF) potential energy function. A simulation can’t proceed 
without it, and the availability of the appropriate FF is among the first issues that 
a researcher must confront when considering a new system. Furthermore, proper 
parameterizations in the force field developed is necessary. This is a technical 
aspect which needs continuous attention in molecular simulations since a force 
field is good if it provides agreement with all available experimental data, taking 
into account for the simulation and experimental uncertainty. It is true that 
experimental techniques are improving and thus, even if a force field have always 
provided satisfactory agreement with experimental data, it may later begin to 
show discrepancies. The only way to solve this problem is further and continuous 
improvements of the force field which can lead to a better description of the 
molecular interactions and a better agreement with the experimental data. 

The three main force fields, which have been tested and used in recent years in 
lipid bilayers simulations, are GROMOS [52-54], AMBER [55] and CHARMM 
[56, 57]. 

GROMOS uses united atoms approach representing each of apolar CH3, CH2, and 
CH groups of hydrocarbons as a single particle, allowing in this way to reach 
about 3-fold speedup comparing to other atomistic simulations. The GROMOS 
force field are developed in many versions which can be divided into two main 
groups: one with original GROMOS non-bonded parameters (for example, 45A3 
and similar parameter sets [58]), and the second with the Berger modification [59] 
of parameters, which is actually the most frequently used. In the latter one, the 
Ryckaert-Bellemans potential is implemented to describe torsional rotations of the 
lipidic hydrocarbon chains. The GROMOS force field is native and continuously 
implemented in GROMACS simulation software package [60]. 

Beside, AMBER has been implemented to treat at best lipid systems only in recent 
years. The release of Amber 14 [61] includes Lipid14 [62], a lipid force field 
suitable for the dynamics of phospholipids. Lipid14 derives directly from Lipid 11 
which was originally developed to be fully compatible with the other pairwise-
additive AMBER-based force fields. Currently, it includes parameters from the 
General Amber Force Field (GAFF), a novel charge derivation, as well as ongoing 
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refinements of parameters for phospholipids. Furthermore, in this implementation 
within the AMBER MD package, it allows tensionless simulation of a wide number 
of lipid types. In addition, the modular nature of this force field provides a large 
number of combinations of head and tail groups to create different lipid types, 
permitting in this way the easy insertion of new lipid species. It is totally compatible 
with the standard AMBER force fields built for protein, nucleic acid, carbohydrate, 
thus it enables simulation of hybrid molecular systems. 

Finally CHARMM force field [56] describes all hydrogens explicitly and within 
this FF, a more detailed description of intramolecular interactions is provided. 
Thus, the Urey-Bradley term for covalent angles and a richer variety of 
parameters for dihedral angles are included. Concerning the force field (FF) 
parametrization, CHARMM parameters for lipids were introduced first by Feller 
et al. [63] (Charmm22 parameter set or referred as C22) and then were updated in 
Charmm27 (c27) parameter set [12, 64] and also in its extension C27r. The 
CHARMM force field was firstly born in the original CHARMM software, and it 
is originally present in NAMD simulation package [65]. It is also implemented in 
a number of other simulation packages such as GROMACS. Successively, the 
CHARMM36 lipid force-field have been developed which have led to a 
quantitative accuracy for many membrane-protein properties predicitons [66]. The 
limit is the membrane dipole potential which is incorrectly predicted unless some 
form of polarization is included within the force-field. Indeed, non-polarizable 
FFs attempt to reproduce many-body polarization effects in an averaged way, 
using partial atomic charges that are invariant to their electrostatic environment. 
To solve this problem, recently there has been some efforts to introduce 
polarization for the common lipids found in cell membranes [67-69]. However, 
there still remains only non-polarizable FFs for the treatment of other membrane 
molecules as sphingomyelin (SM) and Cholesterol (Chol) [70, 71]. 

Recent applications and developments of such FFs in classical MD simulations 
are discussed in reviews [72, 73]. Among them, very recently, Robinson et al. 
developed a new polarizable force-field which could be successfully used to treat 
the major components of membrane raft domains and it is consistent with 
previous force fields of the same class [74]. Using this novel approach, the 
properties computed show good agreement with the available experimental data 
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for a wide variety of properties and also represent an improvement over the non-
polarizable FFs for the above mentioned critical properties (i.e. membrane dipole 
potential and induced dipole moments). In one of its applications, it has been used 
to perform simulations on membrane raft-like domains using the polarizable 
Drude oscillator model and it provided qualitative and quantitative agreement 
with experimental details. 

RUNNING MOLECULAR DYNAMICS SIMULATION FOR LIPID 
BILAYERS SYSTEMS 

Possible Pathways to Generate a Mixed Lipid Matrix 

There are many different pathways to generate an homogenous or heterogeneous 
lipid matrix. Most of them are extensively and clearly reported in some recent 
tutorials, as reported hereby: 

 http://www.gromacs.org/Documentation/Tutorials#Membrane_Simulations 

 http://ambermd.org/tutorials/advanced/tutorial16/ 

 http://www.ks.uiuc.edu/Training/Tutorials/#specializedtopics 

Other methods are reported in recent papers [75-78]. In a typical approach, to 
build an homogenous membrane lipid, the reference lipid molecule oriented along 
molecular axis z (perpendicularly to the membrane face, the xy plane), is 
randomly rotated and copied several times on both sides of the lipid bilayers [75]. 
Water molecules are added to fill in the gaps above and below the phospholipids 
leaflet to hydrate the lipid head groups. In addition molecules such as SM 
(sphingomyelin) and Chol can be inserted in order to correctly represent a cell 
membrane model, which must be inherently asymmetric and heterogeneous for 
composition. This procedure keep intact the overall number of phospholipids in 
both the leaflets matrix [75]. Indeed, the asymmetry of lipid distribution can be 
generated by substitution of certain number of phospholipids in one of the two 
leaflets by same number of another type of membrane lipid [76-78]. 

Other pathways to obtain the lipid bilayers structure is the spontaneous aggregation 
runs generated using the GROMACS tool genbox and it consists in repeatedly place 
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one of eight different phospholipids’ conformations from a vacuum ensemble with 
random orientations into a simulation box of a given size. Water can be added using 
the same tool to complete the model. This procedure must be repeated with different 
seeds for the random number generator and for different sets of lipid configurations 
in order to generate independent starting structures. 

Often, Na+ or Ca2+ ions are added substituting randomly a number of water 
molecules if it is necessary to balance the net charge associated with the presence 
of certain type of phospholipids [76]. At this point, the excess of energy 
associated to the eventual overlaps of neighboring atoms must be removed 
throught a full minimization process. 

Very recently, free web servers have been developed in order to automate and 
simplify the building process of heterogeneous lipid bilayers. They also provide 
molecular topologies for most common lipids which can be used on both united and 
all-atom force fields. Some examples include MemBuilder (www.membuilder.org), 
a web-based graphical user interface have been implemented for using with 
GROMACS [79] and other software packages such as PACKMOL [80], CHARMM 
GUI (http://www.charmm-gui.org/input/membrane), web-based graphical user 
interface supporting up to 32 different lipid types [81] and the most recent LIPID 
Builder (http://lipidbuilder.epfl.ch/builder) [82]. 

Settling out Force Field and Simulation Conditions 

As already reported in the previous section, many force fields have been 
developed to treat lipid bilayers systems. However, the proper choice of force 
field potential and parameters is always critical for accurate simulation results, 
since it must be directly related to the model and the system under test. As a first 
choice, the basic strategy to describe phospholipids is based on the force field 
developed by Berger et al. [59]. Other ways, the cis double bond in the oleoyl 
chains at position C-9 can be modeled successfully using torsional parameters of 
GROMOS96 FF. Within the same force field, the parameters for the lysine 
ammonium group are used to model the phosphatidyl-ethanolamine (PE) 
headgroup, following Tieleman and Berendsen’s model for POPE [83] and 
considering that a small repulsive potential must be put on the ammonium 
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hydrogens. In all the simulations it must be settled the time step (for example 2 
fs), the cutoff (for example 1.0 nm) for the Lennard-Jones interactions and the 
Ewald Particle Mesh method in order to evaluate the electrostatic interaction. All 
the MD simulations should be performed using an anisotropic-coupling pressure, 
keeping the pressure about 1 atm, value which allow the independent fluctuation 
of each axis of the computer box under periodic boundary conditions (PBC). The 
SPC (Berendsen et al.) [84] or the better TIP3P [85] water model is adequate for 
this kind of simulation. In these conditions, the systems achieves an equilibrated 
state after a certain number of ns of simulation (usually 30-50 ns), which can be 
stated observing the average surface area per lipid for a specific type of membrane 
lipid leaflet. The data analysis must be performed on trajectories only after that 
the average lipid area of the bilayer had converged and the box dimensions had 
stabilized, thus collecting data from the last ns (for example 20-25, chosen for 
most systems) of the trajectories. Most analysis can be performed using standard 
GROMACS tools or other software packages such as VMD [86]. 

The volume per lipid Vl is calculated from the box volume Vbox by subtracting the 
volume of pure SPC or TIP3P water molecules under the same conditions and 
dividing by the number of lipids in the box. The area per lipid of the bilayer is 
calculated from the lateral box dimensions and it refers to its projection onto the 
lateral plane. More details can be found in the reference papers [78, 87]. Other 
type of systems use the force field parameters for standard lipids (i.e. POPC, 
DPPC) as included in the validated united-atom description of Tielman and 
Berendsen [83], whereas parameters from works of Niemela et al. [88] are used 
for SM and Chol. 

Mostly, GROMACS [60] or AMBER [61] software are generally used to integrate 
the equations of motion and all bilayer systems are initially minimized using 
steepest descent algorithm to avoid bad contacts arising from steric constraints 
[89]. Other choose of force field and parameterization is described below. 

Most frequently the recent version of the CHARMM force field (CHARMM27) 
[66] is used, since it has been shown to have brilliant performances for saturated 
lipids and for lipids with a low degree of unsaturation. 
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An example of a well tested protocol is reported herein. In detail, the minimized 
bilayers are simulated first in the NVT ensemble using a Langevin thermostat, and 
subsequently in the NPT ensemble, using a Berendsen thermostat and semi-
isotropic pressure coupling. Often, when a high degree of unsaturation is present, 
a long equilibration period (such as 2.0 ns) is needed to achieve a convergence of 
the dimensions of the system. After the equilibrium reached, the dimensions of 
the lipid bilayers can be monitored over an additional 1 ns were the area per lipid 
and lamellar spacing, have been defined accurately [90]. 

Finally, only in recent years, computer simulation approaches have been used to 
unravel the molecular details of membrane fusion. Over the past decade, fusion 
between apposed membranes and vesicles has been studied using a large variety 
of simulation methods and systems. Initially the full fusion of two flat membranes 
was studied by means of Monte Carlo (MC). These computational approach, 
however, have an implicit problem associated to the boundary conditions which 
may influence the results of simulations; in fact, the volume of solvent between 
the two fusing membranes must remain constant until a fusion pore opens to allow 
the solvent to flow into the spaces behind them. However, the final technique 
used, which at the expense of higher computational cost can provide a more 
accurate chemical representation, is once again molecular dynamics (MD). 
Because of the computational cost coarse-grained (CG) models are introduced 
into the fusion field (see in next CG section). The use of MD allowed, for 
instance, to discriminate between different types of lipids and in addition 
interesting differences are found in the fusion pathways between, for example, PC 
and PE lipids. More recently also simulations at atomistic detail have been 
reported of full vesicle fusion. The first such study was performed by Knecht and 
Marrink on a highly fusogenic mixture of DPPC and palmitic acid [91]. Because 
of the high computational cost of such atomistic MD simulations, it is not possible 
to considerer the self-fusion of a very large vesicles (not over 15 nm) with its 
periodic image. Noteworthy is also the introduction of distributed computing to 
the fusion arena by Kasson et al. [92] and indeed the availability of thousands of 
processor nodes allows for systematic studies on fusion pathway statistics. 
Although simulations show that the choice of fusion pathway is stochastic, that is, 
the same system can follow multiple pathways, membrane composition does play 
a role in the prevalence of one pathway over the other [91, 92]. 
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FULL ATOMS MOLECULAR DYNAMICS OF LIPID BILAYERS: 
STATE OF ART AND CASE STUDIES 

Over the last few decades, among the other computational techniques that have 
emerged in Science, the atomistic Molecular Dynamics (MD) simulation have 
been extensively implemented and used from scientists all over the globe to 
obtain insight with atomic detail of steady and dynamic properties of lipid 
bilayers based supramolecular systems. In this regard, a critical aspect that must 
be identified in all the MD simulations is related to the time and length scale of 
process observed, the ensamble used, the pressure and temperature control. 

However, the amount of works on simulations of lipid membranes has achieved 
higher accuracy and prediction capabilities; the scale of systems that can be 
studied continues to increase with the increasing of the computer power [4-50] 
and with the improvement of the MD simulation software. 

At present it can be identified a general limit on simulations which can be up to 
5000 lipids in full atoms MD simulations and up to 50000 in coarse grained 
models. Concerning simulation time length, it must be pointed out that the 
equilibrium motions in lipid bilayers range from picosecond time scales (rattling 
of individual lipid hydrocarbon tails) to over many microseconds (collective 
motion of all lipids, m size dimension). Those motions can be investigated 
experimentally by means of spectroscopy methods (the former) and microscopy 
(the latter). Actually, hundreds of ns have became routinely for full atoms MD in 
bilayers, but if a further extension of the simulation time lengths is required, it 
must be necessary to refer to the coarse grained approach (up to ms-s time length). 
Usually, periodic boundary conditions (PBC) are able to avoid strong artifacts 
from presence of boundary planes, and this way a stack of bilayers with infinite 
dimension is simulated. 

Finally, a particular attention in simulations must be taken to identify the 
equilibration time to reach a steady state. To this purpose, Porasso et al. [93] 
studied lipid bilayers with different composition in their liquid crystalline phase in 
order to establish a general criterion to identify the reaching of such a state. In 
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particular they studies the dynamical temporal evolution of some lipids properties 
(i.e. area per lipid, the deuterium order parameter, the lipid hydration and lipid-
salt coordination) and they observed that the time required depends strictly on the 
single property studied. It has been found out the following order from faster 
equilibration property to slower: coordination of ions = deuterium order parameter 
> area per lipid=hydration. As a consequence, when the mean area per lipid or 
hydration of lipids are stable, we can ensure that the lipid membrane has 
equilibrated to the steady state. 

Live cell membranes can be constituted possibly by thousands of unique lipid 
species [94], and the complete in silico reproduction of such complex systems is 
quite impossible. For this purpose, ad hoc model systems have been built to gain a 
deep insight into the way the lipids mix and these kind of simulations have 
developed in parallel with the study of Cholesterol containing bilayers. At the 
start, such simulations explored interactions between steroids and other lipids, in 
particular local interactions often reproduced in terms of highly stylized umbrella 
or other models. More systematic studies which may be extended to a length scale 
where domains might form, have been out of reach until recently. Beside, the 
condensing effect of Cholesterol on phospholipid bilayers can be reproduced both 
with all-atoms and Coarse Grained models [95]. However, atomistic simulations 
have not been the primary choice to directly observe lipid domain formation in 
membranes, due to its intrinsic computational constraints. In fact, the dimension 
of a small domain is considered around 10 nm in diameter and this still represents 
a rather large simulation by today’s standards. 

Cholesterol’s Inclusion Effects on Properties of the Bilayers: From Early to 
Recent Studies 

Cholesterol amounts up to 50 mol% of the membrane lipids in eukaryotic cell 
membranes and thus represent an important constituent [96]. Its biological roles 
involve the maintenance of proper fluidity [97], the reduction of passive 
permeability [98], and the increase of the mechanical strength [99] of the 
membrane. In particular, the Cholesterol’s ability to condense fluid phospholipid 
membranes has been known for almost a century [100]. Because of all these 
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important biological roles, phospholipid-Chol interactions in the membrane have 
been studied widely [101], revealing that the steroid increases both the order of 
the hydrocarbon chains (ordering effect) [102, 103] and the surface density of the 
membrane (condensing effect) [104, 105]. Both effects are important since they 
have been observed in biological and in model membranes [106]. Several studies 
concerning molecular dynamics (MD) simulation of dimyristoylphosphatidyl-
choline-cholesterol (DMPC-Chol) bilayers, focused on the effect of Chol on the 
organization of the membrane-water interface [107] and the ordering of DMPC 
alkyl chains [108]. However, at present the ways cholesterol induces phospholipid 
condensation is poorly understood, despite the numerous experimental and 
theoretical investigations which have been carried out. The umbrella mechanism 
have been proposed and according this model, cholesterol and lipid acyl chains 
become more tightly packed as the steroid content increases, since they share 
limited space under phospholipid headgroups (Fig. 1) [109]. In an alternate 
proposed mechanism, the flexible acyl chains of the phospholipid complement 
perfectly cholesterol’s planar nucleus to produce a high number of close 
hydrophobic contacts and tight packing [110]. In a recent work, Regen et al. 
distinguishes between these two mechanisms on the basis of an experimental 
evidence and shed light into the origin of Chol’s condensing effect [111]. 

Beside the pure mechanicistic studies, Chol’s preference for specific fatty acid 
chains was investigated in MD computer simulations [112] of a lipid bilayers 
membrane consisting of Chol and 18:0/22:6(n-3)cis-phosphatydylcoline (PC) in a 
1:3 ratio. Three bilayer compositions were investigated [i.e. 18:0/22:6(n-3)cis-PC, 
18:0/22:5(n-6)cis-PC, and 18:0/22:6(n-3)cis-PC with 25 mol % Chol] and it came 
out that the distribution of lateral stress within the hydrophobic core of the 
membrane is sensitively dependent on the degree of chain unsaturation and on the 
presence of the steroid. Moreover, the bond order parameters in the phospholipid 
tails showed an increase with addition of the steroid which is proportional also to 
the Chol content [112-116]. Furthermore, it has been observed that the steroid 
promotes the formation of highly ordered raftlike membrane domains in presence 
of saturated lipids, whereas domains rich in unsaturated lipids with a double bond 
in the middle remain highly fluid despite the presence of Chol [117]. 
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Figure 1: DOPC and DPPC bilayers arrangements at increasing concentration of Chol.  
A) DOPC + Chol 20% B) DOPC + Chol 30% C) DOPC + Chol 50% D) DPPC + Chol 20%  
E) DPPC + Chol 30% F) DPPC + Chol 50% 

Furthermore, cholesterol’s effect on the distribution of the terminal methyl groups 
of DOPC has been investigated combining neutron scattering with molecular 
dynamics simulations [118]. The results showed a higher disorder in the DOPC 
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bilayer than was previously thought based on X-ray scattering profiles, with 
methyl groups reaching the head group region. The extent of the broad methyl 
density dramatically decreased when a higher Chol amount have been 
incorporated (33 mol%), and this behavior can be ascribed to the ordering of the 
bilayer and the straightening of the lipid tails. Full atoms simulations reproduced 
both the extent of the DOPC tail’s disorder and the effect of the steroid on 
reducing the disorder. 

Finally, Olsen and Baker investigated the difference between the same percentage of 
cholesterol and of oxysterol (40% mol) on a lipid membrane, showing dramatic 
differences between them [119]. They extended this work to study other oxysterol 
and Chol mixtures [120]. Other recent in silico simulations are related to the 
identification of interactions involving glycolipids in model membranes [121-123], 
phosphoinositides [124], sphingomyelin [125], diacylglycerol [126], and other 
sterols [127, 128], model yeast membrane [129], bacterial model membranes [130], 
asymmetric cholesterol and sphingomyelin mixtures [131]. 

Cholesterol and Nature of Lipid Rafts 

The role of the steroid in regulating raft stability, and organization in animal cells, 
was highlighted in several studies carried out on phospholipid monolayers 
containing cholesterol. Indeed, many groups studied membrane domains with 
high-Chol concentrations [132-136], which are often referred to as rafts. These 
domains are supposed to be important in cellular signaling, although final 
experimental evidence in vitro is not yet attained [137]. 

The existence of lipid domains had been already suggested on earlier work, but 
the lipid raft hypothesis was conceived as an explanation of the difference in 
membrane sorting between the apical and basal sides of epithelial cells (Fig. 2) 
[132]. During last, the nature of lipid raft domains in model membranes have been 
studied extensively during last few years, by means of long term molecular 
dynamics simulations [138, 139]. These simulations were performed on binary 
mixtures of Cholesterol-phospholipids and also on ternary mixtures containing the 
steroid, phospholipids with a low transition temperature Tm, and phospholipids 
with a high main transition temperature Tm. In this way, precise information 
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about Chol-lipid interactions are provided and the nature of lipid rafts has been 
pointed out in model membranes [138]. 

The hypotesis of membrane sorting induced by cholesterol-sphingomyelin 
interactions has changed the traditional viewing of lipid membranes, and an 
enhanced bioactive role for specific lipids has been finally recognized [133]. 
However, in the current prevailing representation, rafts are small, dynamic 
domains in membranes enriched in sphingomyelin or other saturated lipids, 
Cholesterol, and specific membrane proteins [134]. 

 
Figure 2: Fluid Mixed Lipid Bilayer Domain Formation. On top, the Coarse Grained model for 
DUPC, DPPC and Chol. Fully saturated (DPPC) and doubly unsaturated (DUPC) lipids, tend to 
segregate in large domains when mixed in the same bilayer. At the bottom we can see the preferential 
packing of Cholesterol within the fully saturated fatty acid chains of DPPC. Systems coordinates pdb 
Files have been taken unmodified from http://md.chem.rug.nl/cgmartini/index.php/example-
applications2/lipid-membranes Authors: Marrink SJ, Risselada HJ, Yefimov S, Tieleman DP, de Vries 
AH. 
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The above mentioned compounds show an increased tendency to pack more 
tightly than in the surrounding membrane. This behavior gives rise to a liquid-
ordered region(Lo), which coexist with the surrounding non-raft liquid-disordered 
regions(Ld). The origin of the tighter packing is not completely clear: it has been 
ascribed or to strong hydrogen bonding between sphingolipids and Cholesterol, or 
also to stronger van der Waals’ interactions occurring between Chol and SM with 
respect those founds for other classes of lipids such as DPPC [135]; such packing 
can be described with qualitative and quantitative accuracy by means of molecular 
dynamics only if polarization effects are included into the simulations [139]. 

Beside these intermolecular interactions, another important fact to be considered 
for the lipid raft hypothesis is the cholesterol’s localization. It is well documented 
in literature that phospholipids have an asymmetric distribution: 
phosphatidylethanolamine (PE) and phosphatidylserine (PS) are concentrated on 
the inner leaflet while the external leaflet is enriched in phosphatidyl-choline (PC) 
and sphingomyelin [140]. 

The understanding of domain coupling across these asymmetric membrane 
leaflets since it is supposed to be critical for the existence of lipid rafts and one of 
the most discussed topic in this research area is represented by cholesterol’s 
distribution across the asymmetric plasma membrane. In fact, the knowledge of 
the exchange velocity of Chol between leaflets is an important aspect to clarify for 
assessing its effect on domain formation. Among the proposed models, Garg et al. 
proposed a slow cholesterol flip-flop [141], which is associated to an active 
transport of the steroid, which could easily maintain a non-equilibrium 
distribution across the bilayers leaflets. These flip-flop motions have been studied 
on the basis of atomistic and coarse-grained methods: they start on a poly-
unsaturated DAPC bilayer and at the end describe a rigid ordered DPPC bilayer 
containing a 40 mol% concentration of cholesterol together with a model ‘raft’ 
bilayer with a composition of (1:1:1 ratio for Chol: PSM: POPC) [142-144]. 

Beside, other studies were oriented towards the full understanding of the 
chemical-physical properties for both lipid domain structure and their functional 
roles. In particular, it was observed that cholesterol broadens the gel-liquid phase 
transition of the lipids by preventing packing at low temperatures, as reported for 
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instance for DPPC [145]. Furthermore, after its incorporation a clear condensing 
effect is induced into phospholipid membranes: the lipid tails become more 
ordered, the bilayer becomes thicker with a reduction of the area per lipid; as a 
consequence the bilayer becomes more rigid, thus preventing membrane 
deformation and bending [146-149]. 

Cholesterol Containing Membranes and Bilayers as Probes 

Fluorescent steroids are an important class of membrane probes [150] used to 
identify the eventual localization of any non-homogeneous distribution of the 
bilayer’s lipids, particularly during the formation of Cholesterol-rich domains [151]. 

Recently the phase diagrams of complex lipid mixtures gained a renewed interest, 
in particular three-component mixtures of cholesterol or other functionalized 
steroids with two phospholipids species have been investigated, well knowing that 
the development of these phase diagrams for such complex mixtures is 
notoriously demanding. 

As an example, fluorescent cholesterol analogues which are commonly used in 
membrane biophysics, are Nitrobenzoxadiazole (NBD)-labeled steroids. In a 
recent study, it has been reported the design of a new fluorescent probe (NBD-
R595) aimed to explore the phase behaviors of large unilamellar vesicles 
containing one, two-, and three-components [152]. The investigations have gone 
further and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoCholine (POPC) bilayers, 
containing either Cholesterol or one of its two fluorescent analogues, 22-NBD-
Cholesterol or 25-NBD-Cholesterol, have been carried out by means of atomistic 
molecular dynamics [153]. From the data collected it has been identified peculiar 
adopted conformations of these probes in which their tail-labeled fluorophore is 
directly oriented toward the lipid/water interface; this location is quite similar to 
that observed in previous molecular dynamics simulations of other NBD probes. 
However, from a detailed analysis it is clear that nor 22- or 25-NBD-Chol are 
unable to mimic the most important features of cholesterol’s behavior in lipid 
bilayers. Beside, the similarity between the behaviors of other compounds 
belonging to this class of fluorescent probes and Cholesterol itself have been 
underlined in a recent MD [154]. 
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Cholesterol as Stabilizer in Liposome Based Vaccines 

The properties of Cholesterol as an artificial membrane stabilizer have been 
extensively studied in a wide range of phospholipid liposome systems [155, 156]. 
In a recent study taken from literature, Kaur et al. shed a light into a possible role 
of t steroids in cationic liposomal adjuvants containing both trehalose 6,6′-
dibehenate (TDB) and dimethyl dioctadecyl ammonium (DDA), already used as 
strong adjuvant system for vaccines against a wide range of diseases [157]. 

The steroid packaging within TDB:DDA liposomes was investigated and it have 
been observed that the incorporation of Chol into liposomal membranes induces 
the formation of a liquid-condensed monolayer; furthermore it modifies the main 
phase transition temperature of the system, with an increase of the bilayer fluidity 
and a reduced antigen retention in vitro. Beside, in vivo distribution studies have 
been carried out and it resulted that this increased membrane fluidity did not 
interfere with liposomes and antigen deposition at the site of injection. 
Concerning the immune responses, some differences were pointed out: in fact, 
early IgG responses were reduced by the steroid inclusion but there were no 
differences in antibody (IgG, IgG1, IgG2b) responses promoted by TDB: DDA 
liposomes both in presence and in absence of the steroid. Moreover, these 
liposomes induced significantly higher levels of IFN-gamma, and also the 
liposome uptake by macrophages in vitro was higher for pure TDB:DDA 
liposomes compared to their Chol-containing counterparts. All these observations 
suggests both cellular interactions and immune responses can be altered by small 
changes in bilayers mechanics [157]; thus, these physicochemical properties must 
be balanced to gain the desired immunological outcome. 

Cholesterol and Neurological and Immunological Diseases 

Recent studies were directed towards the explanation the Cholesterol role in cell 
membrane in relation to the amyloid toxicity, associated with Alzheimer’s disease 
[158]. In fact, structure and physical properties of the membrane is strongly 
affected by its chemical composition and by the incorporation of small molecules, 
such as melatonin and cholesterol; thereby its interaction with amyloid peptides 
can be affected. Recently, both compounds have been put into relation with 
amyloid toxicity and the melatonin showed a protective role. Instead, the 
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cholesterol’s role remains controversial since the mechanism of this protection is 
still not well understood at molecular level. However, many studies have shown 
clearly that the lipid membrane is critical in enabling amyloid fibril formation and 
its ensuing toxicity [159, 160]. 

In their research work, Drolle et al. [158] used small-angle neutron diffraction 
(SAND) from oriented lipid multi-layers, small-angle neutron scattering (SANS) 
from unilamellar vesicles experiments in conjuction with Molecular Dynamics 
simulations to evaluate the interactions of melatonin and cholesterol with 1,2-
dioleoyl-sn-glycero-3-phosphoCholine (DOPC) and 1,2-dipalmitoyl-sn-glycero-3-
phosphoCholine (DPPC) model membranes. It resulted that melatonin decreases 
the thickness of both model membranes inducing a disorder in the lipid 
hydrocarbon chains; this behavior leads to an increase of membrane fluidity, 
showing an opposite effect to the well-known condensation induced by 
cholesterol. On the basis of these results, melatonin is supposed to counteract 
cholesterol’s membrane ordering effect, thus affecting amyloid binding [161], and 
leading to membrane damage. 

Beside, other studies reported that Chol can hinder the insertion of amyloid 
peptides into lipid membranes but it depends strongly on the type of the bilayers 
lipid and involved amyloid peptide [162]. Moreover, recently it has been observed 
that a non-homogeneous binding of the amyloid peptide to the lipid membrane is 
induce by cholesterol, and it can result in the formation of defects in membrane 
[163, 164]. At the cellular level, the steroid proposed effect is to reduce the toxic 
effect of amyloid plaques on neuroblastoma cells [165]. Beside, to gain a deeper 
understanding of the processes involved, phospholipid membranes with melatonin 
have been modeled using full atoms molecular dynamics [166-168]. As an 
example, the simulated system is composed of 512 lipid molecules, approximately 
28,000 water molecules corresponding to full hydration, together with 72 
molecules of melatonin (12 mol% overall concentration) [166]. The GROMOS 
53a6 force-field inside GROMACS software package has been used in the 
simulations, since it has been tested and validated ad hoc for lipid and peptide 
systems [167, 168].The corrections by Bachar et al. were included for acyl double 
bonds for proper modeling of sterol-lipid interactions [169]. The protocol used 
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has been already found to be reliable for membranes and other related systems 
[167]. 

Other computational studies [170] in the immunological field were aimed to 
establish the Cholesterol role with the activity of some HIV Peptide fusion 
inhibitors (FI). In particular, T-20, also known as Enfuvirtide or Fuzeon, [171] 
and T-1249 [172] have been shown to interfere with human immunodeficiency 
virus fusion of the virus envelope with the immune system cell. The inhibition of 
such a fusion process takes place by binding to proteins responsible for 
recognition and fusion, such as the gp41 protein [173-175], protein responsible for 
the viral pore formation and membrane fusion [176, 177]. More in details, T-20 is 
a synthetic peptide containing 36 amino acids, whose sequence is homologous to 
the C-terminal of HR2 (Heptad Repeat 2) of gp41 [178]. In particular, the activity 
of T-20 is strictly linked to 10 residues from the membrane proximal external 
domain (MPER), also known as tryptophan-rich domain (TRD), which are also 
involved in the peptide binding to lipids [179]. From the in silico results, T-20 and 
T-1249 fusion inhibitor (FI) peptides were shown to interact with 1-palmitoyl-2-
oleyl-phosphatidylCholine (POPC) (liquid disordered ld model) and 
POPC/Cholesterol (1:1) (POPC/Chol) bilayers (liquid ordered lo model), and the 
two peptides establish this interaction with different extents [170]. This different 
behavior can be ascribed mainly to a pocket binding domain (PBD), which is 
lacking in T-20 and present in T-1249. In fact, it has been suggested that the PBD 
domain enhances the interaction of FI peptides with HIV gp41 protein and with 
model membranes [180]. This FI Interaction with both the cell membrane and the 
viral envelope membrane is critical for the fusion process inhibition. Thus, 
molecular dynamics were carried out with the aim of assessing the consequences 
and the differences in the interaction of these FI peptides with ld and lo model 
membranes. As a result, T-20 and T-1249 induced different effects on bilayer 
structural and dynamical parameters [180, 181] and a stronger influence in the 
measured parameters is determined by T-1249’s adsorption to the membrane 
surface. The presence of both binding domains in T-1249 are supposed to be 
critical to explain its stronger interaction, and they can be responsible of 
membrane properties changes upon peptide adsorption. Beside, 100 ns molecular 
dynamics simulations of both solvated bilayers (POPC-in ld and POPC/Chol 1:1-
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in lo) were performed, and several parameters where determined, both for 
validation purposes and comparison with the corresponding peptide-bilayers 
simulations. The results show that the two bilayers behave differently upon 
peptide adsorption, and undergo sizeable structural modifications. Furthermore, 
the computational MD analysis shows an atomistic level of the modulation 
through H bond formation which involves the steroid in the POPC/Chol lo 
system; this further confirm the hypothesis that to gain an enhanced effectiveness, 
both in the binding to gp41 and membranes, the novel designed fusion inhibitor 
must hold both TRD and PBD [180, 182, 183]. Moreover, a stable adsorption to 
bilayers in both phases is required in order allow for higher concentration of the 
HIV fusion inhibitors in proximity of both the cell membrane and the viral 
envelop, thus resulting in a more effective action [184]. 

Mixed Composition Lipid Matrix Systems in Nanomedicine 

Many efforts have been made by scientists to develop new safe and efficient 
supramolecular vectors for transporting a pharmaceutical compound in the body 
to achieve the desired therapeutic effect (Drug Delivery). In fact, if a drug is not 
able to reach its site of action, it is essentially useless; moreover, its delivery is 
affected by its physico-chemical properties, and also by the interplay of these 
factors with binding, transport, and metabolism of the drug in the body. Thus, the 
choice of the delivery methods to efficiently transport hard-to-deliver compounds 
to the appropriate target sites, is of great importance. Beside Drug Delivery, 
another major challenge in pharmaceutical science is represented by the transport 
of gene-based drugs (DNA, oligonucleotides, siRNA) (Gene Delivery). The 
recent progress in the field of Nanotechnology can help to improve the delivery in 
these difficult cases and thus, nanocarriers are widely investigated as potential 
solution. Among nanocarries for DNA delivery, liposomes of mixed composition 
and with different nature (cationic, anionic, neutral) have been the most studies 
ones which are still gaining much attention from the scientific world due to their 
efficiency and manageability [185, 186]. In these field of research, molecular 
systems containing charged lipids, such as cationic bilayers, have been studied 
throught a great number of molecular dynamics (MD) simulations, employing all-
atom or coarse-grained molecular models (better described in next chapter 
session). These mixed lipid systems have a composition in line with the cell lipid 
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composition and thus they represent a good choice to design safe and efficient 
nanovectors for Drug or Gene Delivery. The use of in silico models allows the 
lipid to target drug design allowing the saving of time and money, features that 
make the in vitro experiments very tiring. Computational models also allow a 
more detailed study of the interactions, which allows the development of vehicles 
for drugs even better directed towards their biological target [187]. Some recent 
examples of studies in this field are here reported [188, 189]. The first concerns a 
nonphysiological, cationic lipid, diC(14)-amidine (amidine), which is considered 
a promising vector for DNA, proteins, and also drugs due to its capability to 
arrange in stable liposomes under physiological pH. Indeed, the design of new 
cationic lipids is particularly worth of importance since their liposomes have been 
supposed to be mediators for the cellular uptake of nucleic acids or proteins [188]. 
This new cationic lipid gain both anti-inflammatory and inflammatory properties 
that makes it a particularly interesting target for possible therapeutic applications. 

Thus, to gain inside into its mechanism of internalization, the structure and 
dynamics of a model amidine bilayer together with mixed amidine: DMPC 
bilayers, atomistic molecular dynamics simulations have been performed within 
the GROMACS package, using OPLS all-atom force field together with Berger 
united-atom parameters for the lipid tails, and the Ryckaert-Bellemans torsion 
angles potential. It was observed from the computational data collected a 
considerable fluidity in the hydrophobic bilayer core together with the tendency 
for strong surface curvature, in agreement with the relatively small size of 
experimentally formed liposomes. From the cluster analysis of the trajectories 
frames a thermally accessible population of V-shaped lipids, indicative of fusion 
capabilities with the plasma membrane was showed. This hypothesis was later 
confirmed by fusion experiments and a comparison with the data obtained for the 
zwitterionic dimyristoylphospho-choline (DMPC), which also carries two 
saturated C(14) tails, was done [188]. Beside, several atomistic MD simulations 
have been performed to explain the polyethylene-imine (PEI) mediated DNA 
aggregation [189]. The aim was the understanding of the molecular mechanism of 
this process for an optimal design of new gene delivery carriers. All the 
simulations have been conducted using CHARMM General Force Field for PEI, 
and CHARMM 27 force field for all the other molecules. The FF parametes used 
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for PEI have been carefully validated through high level quantum-mechanical 
calculations, since the outcome of MD results are sensible to the chosen torsional 
parameters. The NAMD package, TIP3P water model under periodic boundary 
condition, and Particle-Mesh Ewald electrostatics method were used for all the 
simulations. From the computational results, it has been shown that PEIs can 
contribute to DNA aggregation involving two different mechanisms: (i) it can 
forms poly-ions bridges between DNA segments and/or (ii) it can screen the 
negative DNA charges at a short distance from the surface of DNA molecules. 
According to the latter mechanism, the PEI/DNA charge ratio needs to be above 
certain value in order to maintain a stable aggregation. Indeed, it has been proved 
that PEIs are more capable of neutralizing the DNAs at close distance compared 
with monovalent ions; moreover, they provide a full neutralization at about 12 Å 
from the DNA-C1′ atoms, when the PEI/DNA charge ratio is above 1. 
Furthermore, in these DNA/PEI aggregates the DNAs spacing leis always 
between 21.4 and 29.0 Å and the presence of an excess of PEIs favours the 
binding to the already positively charged aggregate, since it increase its overall 
charge. The molecules in excess may also replace the PEIs previously bound to 
the DNAs in the aggregate, showing a dynamical evolution of the process; 
however, this excess do not change the spacing of the DNAs in the aggregates. 
Overall, these interesting in silico studies contributes to give insights into 
polycation-mediated DNA aggregation and condensation [189]. 

The same group went further in their work considering the modification of 
polyethylene-imine with lipid substitution with the aim to improve the efficiency 
of polycationic gene carriers [190]. The elucidation of the role of the lipid 
substitution in DNA binding and aggregation was the major goal, since it still 
unclear and it needs to be probed at the molecular level. Thus, they carried out a 
series of atomistic MD simulations on DNA aggregation considering a possible 
lipid modified polyethylene-imine (lmPEI) mediation. Indeed, it can be observed 
a significant association among lipid tails of different lmPEIs, which can promote 
DNA aggregation and stabilize the formed lmPEI/DNA polyplex. In additon, the 
lipid tails on the lmPEIs are located at the periphery of the lmPEI/DNA polyplex 
and thus contributing favorably to the interaction of the polyplex with cell 
membrane. 
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The same work was carried out considering siRNA aggregation and it was 
observed that for PEIs modified with short lipids, the increase of the lipid 
substitution level results in more compact and stable siRNA structure [190]. On 
the contrary, functionalizing PEIs with long lipids, the amount of PEI linkage via 
lipid association does not change; instead, it can be observed a reverse effect on 
compacting siRNA structure due to increased steric hindrance during the lipid 
association on individual PEIs. The high correlation between in silico results and 
the experimental data underline the importance of the computational approach in 
designing and evaluating the strength of polycation-based siRNA carriers [189, 
190]. 

Another important application in nanomedicine is related to the understanding of 
membrane-mediated pharmacological effects of drugs. In fact, many drugs of both 
synthetic and natural origin, have a wide range of useful pharmacological 
properties that cannot be explained with the exclusive binding to the protein 
target. Biophysical studies of the interactions of these bioactive compounds can 
shed some light onto these drugs’ effects when used in combination with 
Molecular Dynamics simulations, since they can access time and length scales not 
accessible experimentally and furthermore they can obtain a quantitative 
thermodynamic description of the molecular interactions [191]. Thus, a complete 
biophysical description of possible routes of their membrane-mediated 
pharmacological effects can be provided carrying out simulations of small drugs 
with model membranes. 

SIMULATION OF PROTEINS AND PEPTIDES IN MEMBRANE 
BILAYERS 

In Silico Dynamic Simulation of Membrane Proteins 

Proteins play a major role on Membrane Transport, which represents a fundamental 
process for the living cells. They can act as channels, providing highly selective 
diffusive pathways gated by environmental factors, but they can also act as 
transporters, assisting the movement of substances inside or outside the cells by 
diffusion or active transport. Almost 25 % of proteins in eukaryotic genomes are 
Membrane proteins, and they also constitute more than 50% of current drug targets. 
Most of them are formed by bundles of hydrophobic transmembrane (TM) -
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helices. Being the lipid bilayer environment a complex molecular system, a detailed 
description of protein-membrane interactions using only experimental techniques is 
very difficult. For this reason they are good targets for computer simulations, which 
in this field of research are growing up in rapid progress due to both the availability 
of high resolution protein structures and advances in atomistic simulation algorithms 
[192]. As major goal, atomistic MD simulations can actually reveal the molecular 
mechanisms at the basis of channel and transporter function, extending simulations 
to physiologically relevant time scales such as several micros. Furthermore, 
methodological improvements in coarse-grained (CG) models has potentially lead to 
multi-microsecond dynamics of extremely large systems (see next section for 
example case studies). 

However, the approach in this field of research needs to put a particular attention 
in the quality and accuracy of simulations which are related to several factors. 

Firstly, the treatment of the surrounding lipid bilayer can affect deeply the 
dynamics of the simulated macromolecule. The lack of inclusion of polarizability 
and low precision force field parameters, can result in erroneous description of 
geometrical and dynamical properties of the simulated lipid structures. As an 
example, the area per lipid for membranes can be underestimated and too much 
order in the lipid tail region can be observed. Overall, inaccuracies may affect the 
dynamics of the embedded protein, and large scale protein motions, such as those 
happening during the transport cycle of membrane transporters or gating of 
channels can be hindered. The use of polarizable force fields, already discussed in 
a previous section of this chapter, can partially solve these problems. More 
difficulties still remains in the accurate prevision of all membrane properties 
affecting the protein embedding, such as the dipole potential, even if a first 
successful test have been carried out for a DPPC monolayer [193]. Other key 
attributes in membrane channels that might be affected by force field 
approximations are ion conduction and selectivity. In fact, electronic polarization 
effects, such as those induced by a permeating ion in the channel protein, are not 
negligible, and, therefore, an exhaustive description of such processes can be 
achieved only if these effects are included in the simulation. 
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Another important aspect to be considered is the lipid composition. In fact, 
biological membranes are generally composed of various types of lipids, and even 
exhibit asymmetry with respect to the lipid composition of their two leaflets. 
However, due to the short duration and finite size of the membrane used in 
simulations, a homogeneous single lipid bilayers composition is used in most in 
silico studies. This problem of lipid composition is less of concern, despite the 
fact that the majority of the simulated membrane proteins conserves its main 
function after inclusion in model bilayers. However, in some cases, the biological 
function can be altered by the physical-chemical nature of lipids: for example the 
presence of anionic lipids affects the binding and activation of coagulation 
factors, and signaling proteins. This problem can be overcome including a closer 
representation of the protein natural environment in the simulation. 

Indeed, during last years the greatest part of simulations concerning membrane 
protein focused on ion channels [194-201], on G-protein coupled receptors 
(GPCRs) [202, 203], on protein-conducting channels [204], on Receptor tyrosine 
kinases [205-208], as well as on various transporters [209, 210]. In this section we 
discuss some example studies in this field of research. 

Most studied for their physiological importance are Membrane channels, 
responsible of selectivity, and sensitivity for a cellular optimal conductivity. 
During conduction events, these proteins are usually involved in small motions, 
easily reproduced over time scales shorter than microseconds and thus readily 
studied by MD methods. 

A system of considerable biophysical interest is the Voltage Sensor Domain (VSD) 
of potassium (Kv) channels, which has been extensively studied as Kv ion channel 
tetramers as well as isolated voltage sensors by means of atomistic simulations [194, 
212]. These membrane proteins are highly selective for the cellular conduction of K+ 
ions and they are responsible for maintaining the membrane resting potential. These 
channels open in response to a variety of stimuli, such as binding of ligands or 
changes in the transmembrane potential and intracellular pH. The conduction pore is 
regulated by the selectivity filter of the channel and four binding sites for K+ ions are 
provided. Conformational changes in the selectivity filter have been generally 
considered as responsible for the K+ channels inactivation. 
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In order to investigate this behavior [194], the KcsA potassium channel in its 
inactivated state has been characterized using a combination of experiment and 
simulation techniques. The in silico results showed that the conductive 
conformation of the filter is intrinsically unstable and can assume different 
conformations. On this basis, it has been suggested that during the opening of the 
channel gate, the selectivity filter fluctuates between alternative conformations, 
thus assuming the role of a secondary (fast) gate for the conduction of the K+ ions. 
Other non-conductive conformations of the filter have also been identified in the 
simulations of KirBac1.1 channel (Fig. 3). 

More recent computational studies have been conducted on KcsA channels and 
the research have gone forward with the aim to better clarify the basis of ions 
selectivity [198-200]. In fact, the high number of theories on the origin of the K+ 

channel selectivity depends on the intrinsic difficulty in relating these simulations 
to the experimentally observed activity. One of the most direct measures of K+ 
selectivity is provided by blockade experiments in the presence of Ba2+ ions. 
Recently, Piasta et al. carried out Ba2+ blockade experiments on the KcsA channel 
[213], which have been particularly useful due to the availability of a high-
resolution X-ray structure of this channel. Later on, Roux et al. [200] reported the 
results of umbrella sampling and free energy perturbation (FEP) simulations 
aimed to provide an explanation of the previous conducted Ba2+ blockade 
experiments [211]. The attention was focused on some of the TM domains of 
voltage-gated potassium channels which are known as voltage-sensor domains 
(VSDs). In these domains, there are highly charged segments, which are formed 
by multiple positively charged residues, known as gating charges. These 
aminoacids are positioned uniformly at every fourth position on one of the TM 
helices. Changes in the electrostatic potential induce the VSDs movements, thus 
coupling the transmembrane voltage to the conformational change of the 
conduction gate. From results collected, it appears that the charged residues, 
mainly represented by arginines, are fully solvated inside the membrane and they 
are further stabilized either by interaction with the lipid headgroups or by salt 
bridge interactions involving other protein’s charged residues [195]. In addition, 
the membrane electric field is concentrated within the VSDs, thus resulting in a 
sharp voltage-gradient across the membrane. Finally, in 2012, Shaw et al. [197] 
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reached the final goal in proposing a general mechanistic model for the Kv 
voltage-gated ion channel superfamily in order to explain experimental data 
apparently in conflict. In their study, they used atomistic MD simulations, and 
obtained a representation of how voltage-gated potassium channel (Kv) switches 
between activated and deactivated states [197]. 

Beside all these studies, once again by means of full atom MD, another research 
group investigated the structural and dynamical properties of the voltage-gated 
potassium channel Kv1.2 embedded in bilayers with modified upper or lower 
leaflet compositions corresponding to more realistic biological environments. 
Thus, they considered the effects of sphingomyelinase, an enzyme that modifies 
the composition of lipids of the outer membrane leaflets, and secondly the effect 
of the presence of a small fraction of a highly negatively charged lipid, 
phosphatidylinositol 4,5-bisphosphate (PIP2), which is known to modulate 
voltage-gated channel function. The molecular dynamics simulations did not 
exclude the global effect mechanism in the first case, instead for the latter, 
however, local interactions between the ion channel and the lipid head-groups 
were shown to be key elements of the modulation [201, 211]. 

Other groups proposed hypothesis for ion gating mechanisms on the basis of 
simulations’ results of the mechanosensitive channels MscS and MscL. In fact, it 
is not clear how these proteins change conformation in response to different 
surface tensions in the membrane [214, 215]. The mechanosensitive channels are 
proteins found in prokaryotic and eukaryotic cell membranes, which open a 
conductance pore in response to mechanical stress. An important role is played by 
the bacterial large conductance MS channel (MscL) which regulates turgor 
pressure around the cell. Since permanent leak in the membrane could lead to the 
bacterium death, a complete understanding of the gating mechanism of bacterial 
MscL could improve the development of novel antimicrobial agents. Following 
these purposes, the biophysical mechanisms of the gating of the bacterial MS 
channel have been fully investigated starting from its 3D protein structure in the 
closed state and using a large amount of electrophysiological data on its gating 
kinetics [216]. In particular, the initial process of MscL opening in response to an 
increasing tension in the lipid bilayers have been focused by atomistic molecular 
dynamics (MD) simulations. As a result, the interaction energy between 
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membrane lipids and facing amino acids have also been calculated in order to 
identify the sites sensible to tension in the channel protein. 

 

Figure 3: Crystal structure of different potassium channel proteins orientation inside through the 
cell membrane. The latter is shown as a simplified stripe for clarity. A) Kcsa channel in its closed 
conformation (PDB code 3EFF], no K+ ions where crystallized inside the channel domain; B) 
Kirbac1.1 channel (PDB code 1P7B) with K+ ions show in green; C) voltage-dependent potassium 
channel with K+ ions show in green. 

An aspect worth of notice is that spontaneous motions related to function have 
begun to be reproduced by simulations. Some relevant examples are the concerted 
global twisting motion and helix tilting proposed for nAChR activation [217], or 
initial conformational changes responsible for the transport mechanisms of the 
lactose permease (LacY) protein [218]. At present, however, simulations are able 
to efficiently reproduce the position of a membrane protein in a bilayer, and also 
its molecular interactions with the surrounding lipids. 

The identification of amino acidic residues involved in such interactions are 
relevant to gain information about residue distributions within membranes [219, 
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220]. In particular, solvation of the involved amino acid side chains as a function 
of their position along the bilayers normal [221] and also partition free energies 
[222, 223] have been calculated. In a more recent research study, the mean force 
Potentials (PMFs) between ionizable amino acid side chains (Arg, Lys, His, Glu) 
among the headgroup area of a palmitoyl oleoyl phosphatidylcholine (POPC) 
lipid bilayer have been reported. The data were obtained from both atomistic MD 
and adaptive biasing force method in the context of metadynamics [224]. As a 
result, it has been identified the attractive interactions between charged amino 
acids which are mostly stronger in the lipid interface; the strongest interaction 
involves a pair of Arginine in stacked orientations. However, the involved free 
energies of interaction for ionizable side chains cannot be related to simple 
dielectric factors; furthermore the collected results shed some light in membrane 
protein stability and its oligomerization and this is particularly important since the 
principles of both stability and association are currently poorly understood. 

Indeed, if it is necessary to explore more specific interactions of lipids with 
membrane proteins, an increasing duration of MD simulations is needed. Thus, it 
has been observed that selective interactions with anionic lipids are present for the 
potassium channel KcsA [225], well correlating with the available experimental 
data. 

Another case study refers to the identification of protein specific interactions with 
lipid tails, as can be seen between polyunsaturated fatty acids and rhodopsin 
[226]. This study was achieved as a part of [26 ns-100 ns] set of simulation runs. 
However, the need for very long-large-scale atomistic simulations to reach 
convergence in lipid and protein dynamics has been stressed by statistical analysis 
[227]. For this purpose, there is an increasing interest in exploiting the longest 
accessible timescales through the association of atomistic MD with a more 
extensive CG simulation; only this combination can provide sufficient sampling 
for more quantitative exploration of protein-lipid interactions. 

Among Receptor tyrosine kinases, the study of the activation mechanism of the 
intracellular kinase domains for the epidermal growth factor receptor (EGFR) is 
particularly worth of note [205-208]. As it is well known, Receptor tyrosine 
kinases are key regulators of normal metabolism of the cells [228], but they have 
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also a critical role both in the development and progression of many types of 
cancer [229-231]. The trigger for EGFR signaling is an extracellular ligand 
binding, which promotes EGFR first dimerization then activation. This 
dimerization-driven activation of the EGFR intracellular kinase domains is 
fundamental for cellular pathways regulating differentiation and proliferation. 

However, inactive state of EGFR can be both in monomeric and dimeric form; 
this fact suggests that the EGFR activity is regulated by a more complicated 
mechanism. For sure, a key role is played by the surrounding membrane but it is 
difficult to study it by experimental structural studies. 

Thus, in order to elucidate the molecular basis of the EGFR activation mechanism, it 
has been carried out extensive molecular dynamics simulations on EGFR embedded 
in membrane [205]. From the data collected, it has been suggested that in ligand-
bound dimeric form, the extracellular domains can assume conformations favoring 
the association of the TM helices near their N-termini, and determines formation of 
asymmetric kinase dimers (active form). Instead, in ligand-free dimers, the N-termini 
of the TM helices is holded apart, and in this conformation, the extracellular 
domains favor instead C-terminal association, thus inducing the formation of 
symmetric kinase dimers (inactive form). Furthermore, electrostatic interactions, 
which are established between EGFR’s intracellular domains and the membrane, are 
critical in maintaining this coupling. 

Other studies conducted by the same group pointed out other aspects of EGFR 
activation and inhibition [206-208]. In detailed, atomic-level computer simulations, 
however, they found out that the Receptor lies down on the membrane, placing its 
ligand (EGF)-binding site adjacent to the membrane surface. They also showed that 
the epidermal growth factor (EGF) may interact with its receptor EGFR in two 
distinct ways: with or without the involvement of the membrane. This may explain 
the experimental finding that an EGF molecule binds to EGFR more weakly at 
higher EGF concentration. This phenomenon, which is a manifestation of an 
underlying negative cooperativity, is an important but poorly understood 
characteristic of EGFR activity. Thus, further long term Molecular dynamics (MD) 
simulations investigated the structural basis of the negative cooperativity in the 
ligand binding of human EGFR. The long term simulations (tens of s) on such huge 



Recent Advances in Computational Simulations of Lipid Frontiers in Computational Chemistry, Vol. 2   357 

number of atoms (62,000-315,000 total atoms range) were performed on a 
supercomputer developed specifically i.e. Anton, [232], using the Amber ff99SB-
ILDN [233] parameters set, together with the ff99SB* backbone correction [234] for 
proteins, the CHARMM C36 FF [66] for lipids, and TIP3P [85] for the water model. 
In particular, it has been suggested that interaction of receptor bound ligands with 
membrane gives a negative binding cooperativity of the EGF Receptor. This is 
particularly important since this cooperativity is widely believed to be central to the 
effects of ligand concentration on EGFR mediated intracellular signaling and thus 
implicated in cancer proliferation. 

Proteins and Peptides Bound to Bilayer Surface 

In addition to the research fields described in the previous section, the location 
and interactions of a peripheral membrane protein is more complex to predict than 
for integral membrane proteins. 

Replica Exchange Molecular Dynamics (REMD) are versatile computational 
techniques particularly suitable to simulate how some peptides partition 
spontaneously into the bilayer, and then fold to helices either during or after 
insertion. Many application studies of this powerful conformational sampling 
techniques have been carried out [235-239]. 

The typical membrane bilayers, in which a protein or a peptide must be in, is in 
general not a pure lipid bilayer, but may contain steroids, such as cholesterol, and two 
or three phospholipids. Computing resources are certainly at a stage where researchers 
can study more realistic membranes containing five or more phospholipids. However, 
the complexity of building such realistic and heterogeneous membranes makes this a 
considerable challenge. To simplify the building process of protein-membrane systems 
for MD simulations, the graphical user interface (GUI), MemBuilder [79] or the 
CHARMM-GUI website [81] can be successfully used. As already stated, it is well-
known that more than one kind of lipid molecule forms a lipid membrane, and the 
organization and composition of lipid molecules are very important for a membrane’s 
biological functions, which range from membrane trafficking to signal transduction. 
Moreover, it was reported that for some proteins, the heterogeneity of a membrane is 
particularly important for protein function: for this reason it must be used the extension 
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of MemBuilder GUI to incorporate the generation option of heterogeneous lipid 
bilayers. The lipids available for bilayer generation are numerous, and the interface 
allows a user to select more than one kind of lipid to build membranes of different 
compositions. As an application example of this methodological approach, we can 
report here a recent work which presents the benefits of atomistic Molecular 
Dynamics (MD) to study the dynamical properties of biological membranes and small 
peptides such as the Myelin Basic Protein (MBP) C-terminal α-helical peptide, an 
important protein in the central nervous system. This protein is found in various 
isoforms with a predominant splice isoform of 18.5 kDa in an adult brain [240]. 
Recent studies have demonstrated that the severity of multiple sclerosis (MS) is 
correlated with post-translational modifications of MBP, such as citrullination [241]. 
Due to its central role, MBP is thought to be connected with myelin degradation when 
MS attacks the myelin-wrapped nerves of the central nervous system. Molecular 
Dynamics (MD) provides a nice, quick way to study the behavior and interaction 
patterns of MBP with lipid membranes that could provide insights into molecular 
details of myelin structure, and pathogenic mechanisms in MS. This study is 
particularly important since, in addition to bare membrane simulations, the simulation 
of a C-terminal peptide in and mixed bilayers was done for the first time. Interesting 
trends of the two systems related to membrane composition and protein secondary 
structure preservation were observed over the course of the 200 ns simulation. The 
depth of penetration and α-helical structure stability were successfully measured. 
Overall, in this case, the electrostatic environment of the two membranes might 
partially dictate stability of the peptide amongst other factors (i.e., localized pH, lipid-
peptide thermodynamics, lipid density). These findings are significant in their 
implication that membrane composition affects the behavior of MBP, providing 
further insights into myelin structure. The obtained results suggest that local changes 
in membrane composition (e.g. enrichment in DMPE molecules), as well as, 
electrostatic nature of primary amino acid sequence could cause localized 
denaturation/instability of external MBP α-helices possibly augmenting the 
degradation of myelin in multiple sclerosis (MS), resulting in a subsequent decrease of 
nerve impulse propagation efficiency. Other studies worth of notice have been 
conducted on voltage sensitive pheripheal proteins aimed to point out the membrane 
composition influence in inducing response [242]. In particular, interactions of PTENs 
(Phosphatase and Tensin Homologue Proteins) with Phosphatidylinositol Phosphates 



Recent Advances in Computational Simulations of Lipid Frontiers in Computational Chemistry, Vol. 2   359 

have investigated. The simulations performed have allowed to increase knowledge on 
the nature of the PTEN-membrane association process. The predicted PTEN final 
orientation in membrane resulted in good agreement with experimental and 
computational data collected previously [242 and references therein]. Moreover, as a 
result an increased concentration of PIP3 gave more frequent association of PTEN 
with the model bilayer, and PTEN could achieve easily its optimal orientation. 
Another interesting investigation have been conducted by McCammon et al. [243] on 
antimicrobial peptide CM15. They carried out 3-s molecular dynamics simulation 
studying the peptide interactions with different composition membranes, in particular 
with two models: pure POPC and mixed POPG:POPC (1:2) bilayers. From the data 
collected, it was observed that CM15 has significantly reduced interactions with lipids 
in a pre-folded α-helix, compared with its random-coil conformation, thus suggesting 
that the peptide initial structures can affect the simulation results on the 100-ns 
timescale. 

Finally, even if large membrane proteins cannot yet be folded ex-novo i.e. from their 
primary aminoacid sequence, structures of membrane proteins, obtained from both 
X-ray diffraction studies or by comparative molecular modeling, can be successfully 
refined by in silico computations. It is also possible to efficiently reproduce the 
insertion of small peptides, and even to evaluate the related free energy costs. 

Technical Tips for Molecular Dynamics Simulations of Membrane Proteins 

In this section we report briefly common simulation protocols used in molecular 
dynamics studies of membrane proteins and peptides; in particular we focus on a 
practical approach to set up and run simulations of such systems. Before 
embarking in such simulations, many questions and issues must be posed such as 
the current applicability of atomistic Molecular dynamics techniques, strongly 
related to the overall system dimensions, and the accuracy of the force field 
chosen for energetic optimization considering the existence of an accurate 
parametrization of reference molecules. 

In their paper, Tielman and coworkers [244] introduce two new methodological 
approaches to embed a protein in a lipid bilayer. These methods have the great 
advantages to reduce equilibration time and to be almost completely automated. 
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Of course, before approaching any simulation, the choice of adequate force field 
in describing both protein-peptide and lipids must be done. As already discussed 
in previous sections [245], currently there are only four widely used FFs for 
simulating biological macromolecules: GROMOS [60], AMBER [61], CHARMM 
[63], and OPLS [246], which are subjected to continuous development and 
reproduce well many protein characteristics [246, 247]. The correct specification 
of the chosen FF requires the report of the exact revision number. 

However, despite the fact that they have some different strengths and weaknesses, 
they share a number of the same limitations. This is particularly referred to 
electrostatics’ treatment which is simplified accounting for electronic 
polarizability only in an average way. The methods improvements aimed to 
resolve these deficiencies are still ongoing [74, 245, 247-249]. 

An important aspect, which must be considered ongoing with dynamic 
simulations of molecules moving between two very different environments (lipids 
and water), is the parameters’ choice for their description which have to be 
accurate in both environments. Fortunately, the free energies of transfer between 
water and hydrophobic environments can now be directly tested computationally 
[250-255]. Another important factor to consider in evaluating a cofactor or a 
ligand, is its partial charge distribution, or more generally, how the force field 
treats the non-bonded interactions. In fact, point derived charges and Leonard-
Jones interactions give the proper behavior for a molecule in water, but they may 
not be adequate to describe behavior inside the bilayer or in a hydrophobic protein 
pocket. Overall, charges must be preferably derived from high level ab initio QM 
and DFT methods, and they should be totally compatible with the protein FF in 
order to not overestimate charges which may artificially and adversely affect the 
balance of forces controlling the protein-ligand interactions. Generally, it is 
advisable to use the same methodology used in parametrizing the protein and/or 
lipid FF. 

Finally, the proper assembly of the starting lipid bilayer and protein system 
represents the major difficulty in beginning a membrane protein simulation [256-
258]. There are slightly different possible approaches to this problem: (a) 
Inserting the protein into a pre-equilibrated bilayers [259, 260]; (b) building a 
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bilayer around the protein to be embedded; (c) Tieleman suggested methods (Fig. 
4) [244] and finally (d) GUI related methods [79, 81]. At the end of the section, 
we put some link to useful recent tutorial for most used software packages, which 
actually enable to build this kind of simulating systems. Finally, common 
molecular graphic softwares which can be of great help in that system setting are 
MolMol [261], VMD [86] or the GROMACS tool editconf  [262, 263]. 

 

Figure 4: Pressure coupling types: (a) isotropic pressure (b) Semi-isotropic pressure  
(c) Anisotropic pressure 

Tutorial Links 

 ACEMD: 
http://multiscalelab.org/acemd/protocols/ACETK.BLDMEMBPROT 

 NAMD:http://www.ks.uiuc.edu/Training/Tutorials/science/membrane/
mem-tutorial.pdf 
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 CHARMM: http://www.charmm-gui.org/input/membrane 

 GROMACS:http://www.gromacs.org/Documentation/Tutorials#Mem
brane_Simulations 

 AMBER: http://ambermd.org/tutorials/advanced/tutorial16/ 

COARSE-GRAINED MODELS: USEFULNESS AND APPLICATION 

Extending full atom simulation of very large biological system up to the micro or 
even millisecond timescale, is nowadays a challenge beyond our possibilities. The 
main difficulty is due to computer resources, in terms of both speeding up the 
calculation and analyzing such huge trajectories generated during the simulation. 
However, whether we can simulate or not biological events occurring over 
timescales of thousands of nanoseconds, it’s only a matter of how much 
approximation the system can undergo without introducing virtual artifacts, thus 
obtaining good agreement with experimental values. Reducing the number of 
particles, and consequently the “resolution”, without influencing the chemical-
physical properties associated to the molecular aggregates, means acting on the 
granularity of the system thus approximating a fine-grained model (full atom) to a 
coarse-grained one (CG) [264]. This way, multiscale modeling addresses 
challenges related to spatial and temporal scale, opening the way to the mesoscale 
level. Thus, in the CG approach, the system is represented by a reduced number of 
degrees of freedom with respect to an atomistic treatment. Due to this reduction 
and elimination of fine interaction details, the simulation of a coarse-grained (CG) 
system goes faster with respect to the corresponding atomistic simulation, and it 
requires less resources. As a result, orders of magnitude in the simulated time and 
length scales can be considerably increased. 

Two CG approaches have been recently developed to address various time-scales 
in biomolecular simulations, namely the Residue-based CG [265] and the Shape-
based CG [266]. 

Concerning the first, based on the Marrink’s et al., [267] coarse-grained (CG) 
model for lipids, it has been proposed a protein-lipid CG model. Clusters of ~10 
atoms (including hydrogens) are substituted by a single CG bead: four water 
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molecules become one “water” bead, beside an ion with its hydration shell 
becomes an “ion” bead, chemical building blocks of lipids are reduced to single 
CG beads, and each amino-acid is represented by two CG beads - one for the 
backbone and one for the side-chain; glycine is the only exception, represented by 
a single backbone CG bead. After building the CG structure, one needs to define 
rules determining its dynamics. Following a common approach in molecular 
modeling, we assume that CG beads are point-like masses obeying to Newtonian 
mechanics and interacting through effective potentials. Thus, bonded beads are 
connected by harmonic springs, and harmonic angular potentials help to maintain 
shape of molecular chains. Long-range interactions are represented by the 
Lennard-Jones 6-12 potential, and by the Coulomb potential. The bond lengths 
and angles for the CG model are usually derived from the averaging of 
corresponding distances and angles over representative all-atom structures. 

Beside, the Shape-based coarse-graining is designed to model large-scale 
motions of macromolecular assemblies, representing proteins and other 
biomolecules with the fewest point-like particles as possible. Often a single 
protein is formed by compact domains, disordered ones, together with elongated 
linkers or tails; this CG approach method enables one to model both compact 
domains and tails with equal accuracy, taking advantage of an efficient topology 
conserving algorithm originally developed for neural computations [268]. The 
placement of coarse-grain (CG) beads is performed using a self-organizing neural 
network, which adapts to the shape of the molecule to be represented [269]. Once 
CG beads are placed, they inherit the mass and charge of the groups of atoms they 
represent. Neighboring beads are connected by harmonic springs, while separate 
molecules interact through non-bonded forces which are once again described by 
Coulomb and Lennard-Jones potentials. These nb-interactions are parameterized 
on the basis of atomistic simulations and available experimental data. The solvent 
is modeled implicitly, using the Langevin equation to describe motions of beads, 
which allows one to introduce solvent viscosity. All-atom simulations or 
experimental data are used to parameterize the solvent model. 

Among the recent achievements in the force field (FF) in Coarse-Grained 
Modeling, the MARTINI FF [266, 269] for biomolecular simulations, arises as 
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one of the most widespread and solid tool to explore the mesoscale level, and its 
features will be more extensively described in next subsection. 

Moreover, the Multiscale model is capable to give a backmapping of the Coarse 
Grained system to a Fine Grained one, thus allowing for a consecutive step of 
relaxation and refinement of the CG simulation. Below we resume the main 
features of MARTINI coarse grained model and force field. 

Features of MARTINI Force Field 

The main feature of the most used Coarse Grained Force field, MARTINI, are 
presented in this section focusing in details to the principal critical points to 
manage before starting a simulation. 

The first aspect to consider is strictly linked to the definition of the Interaction 
Sites. In fact, a four-to-one mapping is used in the model: this mean that a single 
interaction center represents four heavy atoms. In addition, four main types of 
interaction sites can be defined, namely polar (P), apolar (C), nonpolar (N), and 
charged (Q). For each particle type, a number of subtypes can be found, thus 
allowing a more accurate representation of the real chemical nature of the 
underlying atomic structure. Overall, 18 subtypes can be put within a main type, 
and they are distinguished by a single letter code, denoting its hydrogen-bonding 
capability [(d) donor, (a) acceptor, (da) both, (0) none] or by a number indicating 
the degree of polarity (from 1, low polarity, to 5, high polarity). 

Ring moieties are treated with a special mapping since the classical four-to-one 
procedure is inadequate for preserving the geometry of small cyclic compounds. 
Thus the strategy include as many CG sites as necessary in order to keep the ring 
geometry, and this often results in a 2 or 3 to 1 mapping for each CG beads. Using 
this more detailed mapping, small cyclic compounds such as cyclohexane and 
steroids such as Cholesterol are well represented in their geometry. Hovewer, the 
CG beads have a large density, and thus the interaction parameters for ring beads 
need special treatment. 

First to proceed with simulations, many important features of the CG models must 
be considered. The first concerns the introduction of Antifreeze Particles. In fact, 
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in the CG approach, water gains a freezing temperature that is too high compared 
to real one. In order to solve this problem and thus prevent the unwanted 
premature freezing of the CG water, an antifreeze agent can be added, similar to 
what is done in experimental setups performed at temperatures below the freezing 
point of water. This agents are called antifreeze particles, which correspond to 
special particle type denoted BP4 (Big P4), able to disturb the lattice packing of 
the uniformly sized solvent particles. 

The second aspect to consider is the choice of the Solvent model. In acqueous 
environment, it generally represents four water molecules as a single type P4 CG 
site. In addition, other solvents are represented in other proper models which 
reproduce their own chemical-physical properties. 

Another important treatment regards Ions. Commonly, the CG ions are 
represented by Q type particles and for monoatomic ions (e.g., sodium, chloride) 
the first hydration shell is included in the CG representation. A correct balance 
must be taken in considering their with full charges and their increased hydration 
strength which could produce a short-range repulsion for positive-negative ion 
pairs. Finally a correct treatment of Phospholipids must be undertaken. In the CG 
representation, the phosphatidylcholine (PC) headgroup are formed by two 
hydrophilic groups: the Choline (type Q0) bearing a positive charge and the 
phosphate group (Qa) with a negative one. Beside, the PE lipids 
(phosphatidylethanolamine) have the positively charged group modeled as Qd, 
since it reflects better the hydrogen-bonding capacities of the amine moiety. The 
glycerol ester moiety is described by other two sites of intermediate hydrophilicity 
(Na). Each of the lipid tails is modeled by four hydrophobic particles (C1) (16 
methylene/methyl moyeties) while Oleoyl tails are represented by five particles, 
four of C1 type and a central slightly more polar one (C3) to account for the 
polarizable nature of the double bond. 

A particular attention need the Cholesterol representation, which is modeled by 
eight particles, among which six represents the steroid body and two the short tail. 
With this mapping the predominantly planar structure is well reproduced, and it 
still preserves the asymmetry between the two steroid faces. The cholesterol body 
is mapped on a 3:1 basis, using the special class of ring type particles. The ring 
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structure is kept rigid by the usage of a peculiar combination of bond, angle, and 
dihedral potentials. 

Application Systems of CG Models: Case Studies 

Improved Prediction of the Bilayer Properties 

Many properties of lipid bilayers can be reproduced on a semi-quantitative level; 

these includes the area per headgroup for both saturated and unsaturated PC and 

PE lipids and the distribution of groups across the membrane 

The use of a CG approach presents significant advantages given the current state 

of atomistic simulations. Among these, CG model allows many independent 

simulations in which state conditions can be systematically varied, and thus it can 

be applied to the in silico design of robust membranes, or to correlate lipid type 

and membrane properties. Another strength of the CG Martini model is the correct 

representation of lipid phase behavior, which require both considering very large 

systems due to the collective nature of phase transitions, and long simulation 

times in order to observe the critical nucleation events [270]. Some examples 

include transitions between micelles, bicelles, and vesicles and the formation of 

gel phases and inverted hexagonal and cubic phases. Moreover, the CG approach 

have been demonstrated to be efficient in predicitong the protein-lipid interactions 

of membrane embedded proteins. The most recent applications are grouped in 

several categories and concerns: 

1) The binding modes prediction of proteins with membranes; 

2) Simulating the preferential protein sorting, such as the propensity of TM 
peptides or membrane proteins to partition in either Ld or Lo domains; 

3) The identification of specific lipid binding sites on membrane 
proteins; 

4) The simulation of protein mediated membrane remodeling; 

5) Membrane-mediated protein clustering and  
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6) Gating. 

Some representative cases are reported below. 

(a) Membrane fusion has been a very first applications of the Martini model 
and it represents still a great field of application, since only simulation 
studies can point out details that are not easily probed experimentally 
[271]. As a result, possible fusion pathways between lamellar 
membranes and between vesicles are now quite well described, and at 
present the efforts are directed towards calculating the energies of the 
various intermediates and elucidating the role of fusion promoting 
molecules such as PEG [272]. An important new direction is represented 
by the peptide and protein mediated fusion [273]. 

(b) Another research topic refers to the study of Low-density and high-
density lipoproteins (LDL/HDL), which are involved in the 
Cholesterol transport in the bloodstream and thus play an important 
role in the development of atherosclerosis. Thus, the structure and 
dynamics of these particles have been studied with success, starting 
with the self-assembly of HDL model using the Martini variant 
developed by the Schulten group [265]. Subsequently, the structure 
and dynamics of HDL have been modeled with realistic size and lipid 
composition within the framework of standard Martini [274-276]. 

(c) Another case study regards the behavior of lipid monolayers, 
considering both pure lipid systems and a lipid combination with 
peptides and proteins. Although quantitative reproduction of the 
pressure-area isotherms at low surface pressure remains a challenge 
[277], the monolayers’ properties in the liquid-expanded and liquid-
condensed phases have been correctly describe by the Martini 
approach, which successfully reproduced also the collapse of lipid 
monolayers at highsurface pressure [278]. 

(d) Another application is related to the correct representation of Membrane 
induced curvature. A very important part of the living cells of biological 
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systems is the lipid membrane and the mechanical properties of this 
membrane play an important role in biophysical studies. Investigation of 
how the insertion of additional phospholipids in one leaflet of a bilayer 
affects the physical properties of the obtained asymmetric lipid 
membrane is of recent practical interest. Martini has proved to be 
capable of highlighting new insights on mechanical properties such as 
the computing of the pressure tensor, the lateral pressure, the surface 
tension and the first moment of lateral pressure in each leaflet of such a 
bilayer. Simulations show that adding more phospholipids into one 
monolayer results in asymmetrical changes in the lateral pressure of the 
individual bilayer leaflets. Interestingly, it has been observed that a 
change in phospholipid density in one leaflet affects the physical 
properties of unperturbed leaflet as well. Dissimilar lateral pressure in 
the bilayer leaflets results from changes in the contributing internal 
forces while the higher pressure in the top leaflet implies that this layer 
thermodynamically has a greater tendency to decrease the area with 
respect to the upper leaflet. As a consequence, spontaneous curvature is 
anticipated to emerge in the membrane [279]. 

(e) In conclusion, it must point out that Martini has a number of limitations 
as it can be found in any other model. However, the knowledge of the 
specific weaknesses are important in order to use the construct an 
appropriate model and to further improve it. Most of its limitations are 
shared with all CG models at a fundamental level. This regards in 
particular the chemical and spatial resolution, which are both limited 
compared to atomistic models, and the non correct balance between 
entropy and enthalpy (due to the reduced number of degrees of 
freedom). Other limitations are more specific for Martini and thus it 
could be improved in the next future with the level of coarse-graining 
approach which could accept a more detailed descriptions for parts of 
the studied system. In this way, adding back details in such a model can 
improve its accuracy, but this prevent some of its computational 
advantages such as the computation velocity [264]. This aspect will be 
focused in more details in next section. 
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Hybrid AtomisticCoarse-Grained Biomolecular Dynamics 

A new frontier for Coarse Grained model is oriented on speeding up calculation 
on solutes treated in full atoms (AA) embedded in coarse-grained environment 
(CG), via Hybrid Molecular Dynamics simulations [280]. The critical challenge 
of this hybrid modeling is the coupling of the different levels of resolution, which 
means how to describe the AA/CG interactions. Shi and coworkers re-
parametrized the AA/CG interactions through force matching with the aim to 
simulate an atomistic TM peptide in a CG environment [281]; a different 
approach was followed, instead, by Michael and co-workers [282]. This regards in 
particular, the treatment of hybrid AA/CG Lennard-Jones interactions which are 
derived using standard mixing rules whereas the mixed charge-charge and charge-
dipole interactions are calculated using the standard formulas employed in the 
pure models. Additional scaling parameters must be included for both Lennard-
Jones and electrostatic AA/CG interactions, using an optimal scaling parameter 
which depends on the system size. Moreover, Masella and co-workers combined a 
polarizable pseudoparticle solvent with a polarizable atomistic force field while 
Wassenaar et al. [280] included explicit dielectric screening of the AA-AA 
interactions in presence of charged CG particles, which requires direct Coulomb 
interactions between AA and CG particles. 

As an application, hybrid simulations are mainly focused on membrane-protein, 
where the possibility of speeding up the simulation with a coarse grained 
environment, maintaining the full atom resolution for the protein, could lead to 
the observation of conformational changes events for the protein backbone, 
occurring over long timescales. 
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CHAPTER 9 

Data Quality Assurance and Statistical Analysis of High 
Throughput Screenings for Drug Discovery 

Yang Zhong, Zuojun Guo and Jianwei Che* 

Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins 
Drive, San Diego, California 92121, USA 

Abstract: High throughput screening (HTS) is an important tool in modern drug 
discovery processes. Many recent, successful drugs can be traced back to HTS [1]. This 
platform has proliferated from pharmaceutical industry to national labs (e.g. NIH 
Molecular Libraries Screening Centers Network), and to academic institutions. Besides 
throughput improvements from thousand molecules in early times to multimillion 
molecules now, it has been adapted to increasingly sophisticated biological assays such 
as high content imaging. The vast amount of biological data from these screens presents 
a significant challenge for identifying interesting molecules in various biological 
processes. Due to the intrinsic noise of HTS and complex biological processes in most 
assays, HTS results need careful analysis to identify reliable hit molecules. Various data 
normalization and analysis algorithms have been developed by different groups over the 
years. In this chapter, we briefly describe some common issues encountered in HTS and 
related analysis. 

Keywords: Bayesian model, dose-response analysis, High-throughput Screening, 
hit analysis, hit identification, normalization, ontology-based pattern identification 
(OPI) method, quality control, strictly standardized mean difference (SSMD) 
metric, t-test. 

1. INTRODUCTION 

High throughput screening (HTS) is an automated experimental platform for 
rapidly identifying small number of molecular entities or conditions with unique 
biological properties from a large number of tests. Due to its high efficiency, it 
has been widely used in early stage drug discovery to identify candidate 
molecules for optimization. In a large scale HTS campaign in drug discovery,  
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several millions of small molecules or tens of thousands antibodies are tested in 
vitro for desirable biological activities [2, 3]. Similarly, genome-wide screenings 
of genes and proteins are also conducted to determine their biological functions 
and interactions [4]. More recently, screenings of antibody libraries have been 
performed to select antibodies with desired physical properties such as 
thermostability, colloidal stability and solubility in monoclonal antibody (mAb) 
formulation [5, 6], or specific biological functions [7, 8]. 

 

Figure 1: Major milestones in high-throughput screening development. 

Technological innovations and scientific advances have played essential roles in 
the development of HTS. In early 1980’s, typical screens were conducted 
manually on several hundred samples per week. For example, Pfizer screened 800 
natural products per week from fermentation tubes in 1986 [9]. Since then, the 
increasing capacity of HTS platform showed its potential to rapidly sift through 
enormous number of compounds, antibodies and genes, therefore, promised 
efficient starting points of discovering new drugs. This has led to a paradigm shift 
in HTS technology (Fig. 1). From the late 1980s to early 1990s, drug discovery 
companies have embraced automation and miniaturization techniques for 
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developing new assays on high-density plates. These technologies significantly 
advanced HTS, lowered the screening costs, and improved reproducibility [10]. 
During the 2000s, HTS further evolved to “ultra high-throughput screening” 
(uHTS), with throughput over 100,000 samples per day [11, 12] and ten-fold 
reduction in screening cost when comparing to the mid-1990s [13]. Fig. 2 
summarizes the evolution of miniaturization during this period along with the cost 
of HTS assays. Currently, the screening throughput has reached multimillion 
compounds per week in large pharmaceutical and biotech companies. Many types 
of biological targets have been investigated over the years under HTS platform. 
The emergence of high content screening (HCS) in cell based assays, another 
HTS advance, introduces simultaneous readout of multi-parameters per sample. It 
yields much richer information on various phenotypes of cells than traditional 
single measurement screens [14, 15] such as fluorescent intensity. 

 

Figure 2: Progress on miniaturization in HTS. Figure on the left shows the evolution of plate 
types used in HTS experiments. Plate types are labeled by the number of wells per plate. Table on 
the right compares the assay volume and cost per well for each type (From Refs. [13, 16-19]). 

HTS technology continuously enhances its position in biomedical research over 
time. According to the analysis by Swinney et al. [20], majority of approved 
drugs (new molecular entities - NMEs) between 1999 to 2008 originated from 
screening approaches (Fig. 3). 28 out of 75 (37%) first-in-class drugs originated 
from phenotypic screening – the most productive technology for early stage drug 
discovery, and 17 NMEs (23%) from target-based screens. For follow-on drugs, 
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sometime even misleading [26], because of intrinsic properties of chemical library 
and assay technology. For example, compounds with certain physicochemical 
properties can interfere with assay detection mechanism such as fluorescence [27, 
28]. In addition, HTS signal is typically lower than conventional assays due to 
miniaturization. Moreover, confounding factors such as edge evaporation and 
batch effects can lead to artifacts that render the straightforward interpretation of 
raw signal meaningless [29]. 

 

Figure 4: General early drug discovery process. 

While challenged by large scale data and assay miniaturization of industrial 

screening operations, current HTS data management benefits from the 

advancements of computational technology. According to a recent report, the 

computational costs have declined over 30% annually during the past two decades 

[30]. The advances in computer hardware not only accelerated the evolution of 

HTS automation, but also helped to address the challenges from data acquisition, 

•> 1million compoundsCompound 
Libraray

•Product of primiary screening

•Several thousand compounds 
(e.g. 0.1% hit rate)Hits

•Product of secondary screen and 
counter screening

•A couple of hundred compounds (e.g. 
10%‐40% reconfirmation rate)

Confirmed 
hits

•Product of ADME/tox filtering, medicinal 
chemistry and in silico optimization

•A few compoundsLeads

•Survivor of  animal tests and clinical trials 

•1 compoundDrug



394   Frontiers in Computational Chemistry, Vol. 2 Zhong et al. 

storage and analysis of large data sets [31]. As of September 2013, more than 200 

million bioactivity summaries and 1.2 trillion data points have been deposited into 

NCBI PubChem BioAssay database for 2.8 million compounds, 1.9 million 

chemical structures and 108 thousand RNAi reagents [32]. Such databases 

provide valuable resources for mining and analyzing hits from wide range of 

assays [26, 27, 33, 34]. Many analytical tools and software have been developed 

to analyze high volume screening data [35, 36] including commercial software 

such as IDBS Activitybase, Oxford RS3 and MDL Assay Explorer, and tools like 

Spotfire [37] for visual inspection and exploration. 

From data analysis perspective, a future direction is to integrate primary screening 
data with results from subsequent confirmation and orthogonal assays to expand 
identified hits (see Section 4 for more details). In addition, the integration of early 
HTS data, even “inactive” data, with data from later stages and in silico analysis 
might also benefit the hit characterization and prioritization. Another trend of 
HTS analysis lies on the data management for high content screening (HCS). 
Although a few generic data analysis packages such as CellProfiler [38] and 
PerkinElmer Acapella are commonly used, it is still far from satisfactory in terms 
of automatic HCS quality control and hit identification due to the complexity of 
imaging data. 

In this chapter we attempt to provide an overview of data processing and hit 
identification methods for HTS in drug discovery process. We first summarize the 
typical HTS process and introduce the general workflow of HTS analysis. 
Subsequently, we review both general and specific approaches on data 
normalization, quality control, hit picking, and hit analysis. We also compare the 
advantages and limitations of different hit identification strategies reported in 
literature. Lastly, we discuss the follow-up analysis on the biological properties of 
hit molecules, particularly from recent data mining efforts on HTS databases. 

2. HIGH THROUGHPUT SCREENING PROCESS 

Regardless of assay types and targets, a typical HTS protocol can be divided into 

three major steps (Fig. 5). 
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Figure 5: A typical HTS process. 

A good HTS design consists of a biologically relevant and robust assay, high-quality 
chemical library, and sufficient throughput. Advances in human genomics introduce 
more and more potential targets and the number is expected to increase in the future 
[1]. To identify leads for a selected target, particularly novel targets without much 
prior knowledge, the size and diversity of compound collections are crucial for the 
success of HTS. In the early days of HTS, compound libraries were mainly derived 
from natural products [39] or internally assembled [1]. Modern compound libraries 
utilize the advances in organic and combinatorial chemistry to increase their size and 
diversity. As a result, millions of compounds were routinely screened in the early 
2000s [39]. Meanwhile, the advent of cheminformatics and data mining 
methodologies enable characterizations of individual compounds with great details. 
Diversity of a compound library is determined in terms of pharmacophoric motifs, 
chemical groups, target-based discriminations, etc. [40-42]. A number of software 
(e.g., ChemAxon, Accelrys, Tripos, Schrodinger, OpenEye, and Oxford Molecular) 
has been developed for multi-dimensional characterization of libraries based on in 
silico descriptions [43]. Assay development, on the other hand, aims at maximizing 
the dynamic range between active and inactive compounds in miniature format. Both 
biochemical and cellular assays are routinely employed in drug discovery projects. 
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Biochemical assays have the advantage of clear determination of target engagement, 
while cellular assays have better representation of biological context. In recent years, 
cell-based assays are taking a more prominent role [44] due to its tighter biological 
relevance and the ability for phenotypic/target agnostic readouts. Conditions of HTS 
assays are often optimized to achieve both sensitivity and stability in the biological 
system of interest, followed by statistical evaluations [45]. 

Laboratory automation is a major driving force behind HTS implementation. 
Together with microplate design, liquid handling, and detection technology, it 
greatly reduces screening time and improves data quality and consistency. 
Moreover, modern uHTS systems are able to monitor data quality on the fly to 
ensure early detection and prevention of problems through preventive 
maintenance, equipment self-check and validation [46]. From plate loading to 
reagent dispensing to error detection and data storage, fully integrated automation 
is able to perform assays and deliver data free of any human intervention. 

While data analysis is also involved in the step of library management and the 
implementation of statistical process control, we focus our discussions here on 
methods of analyzing data from screening experiments. 

2.1. HTS Analysis Overview and Workflow 

Usually, raw data from screening systems go through multiple steps before it can 
be reliably interpreted biologically. The main analysis process can be divided into 
four steps, as illustrated in Fig. 6. 

In an industry setting, HTS data usually is integrated with a centralized compound 
management database in order to work efficiently with millions of compounds. 
HTS is intrinsically an error-prone process due to factors such as miniaturization, 
stochastic error, batch effects, and edge effects, the raw signals have to be 
properly investigated and corrected before extracting the meaningful information. 
Therefore, quality control (QC) is a critical step prior to hit selection processes. In 
Section 2, we describe various stages of QC and corresponding statistical analysis. 
The goal of HTS is to identify a few “active” hits from large number of 
biologically inactive samples. Based on different statistical principles, many 
approaches have been applied to select and/or prioritize compounds or genes. 
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They will be discussed in detail in Section 3. The follow-up analysis is described 
in Section 4. It characterizes selected hits, summarizes their chemical and 
biological properties that can be integrated into a comprehensive report for 
decision making. 

 

Figure 6: HTS data analysis workflow. 

2.2. Quality Control (QC) in HTS Results 

Like in any experiments, QC is an extremely important initial step. It is 
particularly true for HTS. The state-of-the-art “industrial” HTS data production 
has surpassed 20-fold of the initial throughput in the 1990s, and over a million 
data points can be obtained in a day in a uHTS campaign [47]. The quantity and 
complexity of modern HTS results present a challenge for data processing. 
Traditional manual QC based on human visualization is no longer practical under 
this circumstance. Thus, large efforts have been devoted to automated QC process 
for error detection and correction from pharmaceutical companies [37, 48-51], 
software companies [52-55] and academic labs [56-58]. Here, we review the 
fundamental statistical principles used in HTS QC at different stages. 
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2.2.1. Normalization 

Normalization is a critical step to remove inter and intra plate bias and systematic 
errors in raw signal. The raw data is usually normalized based on plate-to-plate 
and/or batch-to-batch variations. 

2.2.1.1. Control Versus Non-Control 

Although improved by automation, noise and variation is still inevitable in 
measurements and can be affected by factors such as well location, liquid 
dispensing and signal intensity. For example, well along the plate edge has higher 
rate of evaporation. To help assess background signal level, control compounds 
are usually included in assays. In typical biochemical screens for antagonists, 
negative control is usually assay vehicle such as dimethyl sulphoxide (DMSO) 
solution without any compound. It usually corresponds to the high activity H. In 
addition, positive controls such as potent reference compounds are also included 
to give benchmark activity level, i.e. the low activity L. On the other hand, the 
low activity level L in agonist assays is the basal level signal and the high activity 
H is determined by positive controls, i.e. reference agonist molecules. In control-
based normalization, the normalized activities are calculated as the ratio with 
respect to inhibited or activated and basal level signals (Equation 1). 

Equation 1 

= −−  

where  and  are the signals pre and post normalization for well i, respectively. 
However, outliers in the control wells can introduce biases in controls-based 
methods [59, 60]. 

Sample-based normalization assumes most samples from a diverse library are 
inactive. Therefore, the background level can be estimated by the average signal 
of all wells on a plate (Equation 2). Obviously, it may not be true if a plate 
contains many active samples such as a focused library of a specific target or 
target class [48, 49]. 
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Equation 2 

= − ̅− ̅  
where ̅ can be either the mean(x), median(x) or mode(x) function (usually the 
value with highest probability density). The median is often used because the 
mean is sensitive to outliers and the mode is lack of consistent definition [61]. 

In HTS, non-control based normalization commonly uses Z-score (Equation 3) 
and B-score (Equation 4) [62]. Z score computes the deviation of individual well 
signal from the mean in the unit of the standard deviation. B score is designed to 
correct systematic biases along rows and columns. Both methods are widely used 
in HTS hit identification process [59, 63]. 

Equation 3 

= − ̅
 

where  is the Z-score of well i, and s is the standard deviation or median 
absolute deviation (MAD) of { } in the same plate. 

Equation 4 =  

where  is the B-score of well at row i and column j. = − ( ̅ + 	 + ) 
is the residual of raw signal  and a fitted value based on the mean of plate 
signals ̅ , systematic signal offsets of row i  and column j  [64]. MAD is the 
median absolute deviation of  within the plate. 

A Previous study on normalization methods suggested that no single method was 
versatile for all HTS data sets due to the complexity of different screening 
campaigns [65, 66]. Shun et al. [66] employed five normalization methods on six 
HTS campaigns and proposed a 3-step statistical decision methodology to select 
the optimal QC method based on statistical analysis of assay signals. In some 



400   Frontiers in Computational Chemistry, Vol. 2 Zhong et al. 

cases, the choice of normalization method showed little effect on the final results. 
For instance, seven normalization approaches were applied in a large-scale 
Drosophila RNAi screen, and no significant performance difference was found 
based on confirmation rate from a secondary screening [67]. 

2.2.1.2. By Plate Versus by Experiment 

Plate-wise normalization is commonly done to correct plate-specific systematic 
bias, in particular, when hit rates are low. However, screens of non-random 
samples, such as focused compound libraries or a transcription factor siRNA 
library, may have large number of true positives on a single plate. Normalizing 
within plate under these scenarios can underestimate the signals from true hits. It 
is not unusual for similar compounds to be on a same plate due to library 
generation, which can contribute to the appearance of clustered hits. Without 
strong evidence of intra-plate systematic bias, normalization across all plates in an 
assay is widely used [68]. 

2.2.1.3. Statistical Noise Versus Systematic Error 

Statistical noises from intrinsic fluctuations in raw data can occur at any given 
time during screening. Conceptually, random noises can be minimized by 
increasing sample size [69]. Systematic errors, on the other hand, are time 
dependent and can be attributed to certain known cause(s), such as failures of 
robotic systems, malfunctions of pipettes, variation in incubation time, 
temperature, lighting, air flow, decay of cells, and evaporation of reagents [70]. 
Systematic errors usually result in large scale signal patterns. For example, certain 
area of a plate consistently gives high signal across an experiment or within 
consecutive plates (Fig. 7). It is a common error and usually challenging to correct 
automatically. False positives and false negatives are often the results of these 
errors [70, 71]. 

One way to correct systematic error is to combine normalization with pattern 
recognition. For instance, plates sharing a similar signal pattern and/or from a 
consecutive time interval are grouped, and normalization is applied first within 
the groups then on individual plates. However, such process usually relies on  
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2.2.3. Quality Evaluation 

Before hit selection, the last step of QC assesses if the quality of corrected data 
meets the minimum requirements for hit selections. The assay quality is usually 
characterized by statistical parameters based on dynamic range and variance of 
the measurements. Such parameters are also widely used for assay-to-assay 
comparison in assay development and optimization. 

2.2.3.1. Z or Z’ Factor 

Two widely-used quality metrics proposed by Zhang et al. are Z and Z’ factor [74]. 

Equation 5 

= 1 − 3 + 3| − |  

′ = 1 − 3 + 3| − |  

where  and  indicate mean and standard deviation, s and c represent sample and 
control, and Hc and Lc are the upper and lower bounds of control activities, 
respectively. In general, assays with Z < 0 are considered to have insufficient 
dynamic range because sample and control signal are overlapping. With Z > 0.5, a 
good separation of signal from noise can be achieved. Z factor measures assay 
quality based on signal levels from sample and control, and is used in QC process. 
Z’ factor, on the other hand, represents the resolution of controls in an assay and 
is optimized during assay development. 

2.2.3.2. Strictly Standardized Mean Difference (SSMD) 

For screens using moderate controls (for example, siRNA screens), SSMD 
parameter is considered to be statistically more appropriate than Z factor [75]. 

Equation 6 = −+  
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SSMD measures the difference between two groups, A and B, according to their 
means  and standard deviations	 , where A and B can be samples or controls. It 
is analogous to Z factor for actual sample quality assessment, and Z’ factor for 
assay optimization with controls. SSMD is found to be more accurate and less 
conservative than Z and Z’ methods in siRNA screenings [75, 76]. 

3. HIT IDENTIFICATION STRATEGIES 

Following data QC, the data is analyzed to identify hit compounds or genes with 
good activities and properties for confirmation and optimization in medicinal 
chemistry and/or in silico. For a typical HTS campaign, the primary hit picking can 
be conceptually simplified to a statistical question: how to separate positives from 
negatives with practical constraints such as time and cost. In a primary screen, 
sample activities are usually measured at a single concentration for high throughput. 
Despite the intrinsic limitations of single-dose HTS [77], several statistical tools 
were developed to optimize sensitivity and specificity for hit finding. Usually, hits 
are chosen from the top ranked samples, where actual number of hits is limited by 
the capacity of follow-up experiments or a threshold defined by relevant biological 
rationales [78]. However, the threshold is largely ad hoc in many cases [23, 25, 79, 
80]. Table 1 summarizes the commonly used methods for HTS hit identification and 
the details of individual methods are described in Section 3.1 to 3.5. 

Table 1: Summary of HTS hit identification methods 

Category Application Statistical Model Notes 

Threshold-
based 

Single-dose screens 
without replicate 

Percent of control or 
normalized percent of 
control (Equation 1) 

Lacking robustness. 

Z-scores (Equation 3) Based on constant error 
assumption. Standard Z-score is 
not robust; Z-score based on 
median and MAD preferred. 

B-score (Equation 4) Robust and more resistant to 
outliers than Z-score methods 

Group-
comparison-
based 

Single-dose screens 
with replicates  

Paired t-test or modified 
t-test (randomized 
variance model) 
(Equation 7) 

Low sensitivity if sample size is 
limited. 

SSMD-based methods 
(Equation 8) 

Robust for small sample size. 
Comparable across experiments. 
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Table 1: contd… 

Cluster-based Small-molecule 
screens with built-in 
chemical redundancy 
or 
redundant RNAi 
screens or high content 
screens 

Hypergeometric model 
(Equation 9) 

Robust, high confirmation rate 
than threshold methods.  

Bayesian 
model 

Screens without 
replicates, noisy 
screens (e.g. 
compound mixture 
screens) 

Bayesian models Robust, noise tolerant, better 
performance than Median +/- k 
MAD. Able to combine plate-
wise and experimental-wise 
information. 

Dose response Secondary 
confirmatory screens 
for small molecules 

Sigmoidal curve, Hill’s 
Equation (Equation 10) 

Requires curve fitting process.  

3.1. Threshold Based Methods 

Threshold based methods rank compounds or genes directly by their normalized 
activities. It is very simple conceptually and computationally. The thresholds are 
usually chosen according to the breakdown point [81] theory in statistics. The 
breakdown point is considered as the threshold to determine outliers (hits in HTS 
analysis) without drastically changing the original distribution of the sample set. 
For example, the breakdown point of a normal distribution can be estimated based 
on normality plots. Studies have shown that the approach is preferred for data sets 
with clear outliers, in particular, when robust statistics still applies with median 
absolute deviation (MAD) even when half of the data set are outliers [82]. 

Table 2: Comparison of different threshold based methods 

Strategy Threshold Application Notes 

Top X Activity of the Xth 
sample 

Any screen No statistical basis. 

Mean +/- k SD* k standard deviations 
(SD) away from the 
average of normalized 
activity (z score). 

Screen data with 
low outlier rate or 
after outlier 
removal. 

Based on random error assumption. 
Sensitive to outliers.  

Median +/- k 
MAD* 

k median absolute 
deviation (MAD) away 
from the median of 
normalized activity (z 
score or B score) 

Data contains 
outliers. 

Robust and insensitive to outliers. 
Potentially lower false positive rate 
[83] than Mean +/- k SD methods. 
Log transformation may apply for 
certain assays such as gene activation 
assays, cell growth assays etc.  
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Table 2: contd… 

Quartile Quartile or interquartile Non-symmetrical 
data. 

Independent upper and lower 
thresholds and insensitive to outliers. 
Some studies showed higher true 
positive rate [84]. 

* k is typically 3 according to 3-sigma rule [84, 85] 

3.2. Group-Comparison-Based Methods 

In order to minimize both false positive and false negative rates, it is preferred to 
screen replicates. Particularly, it is now a routine practice for siRNA confirmatory 
screens [86]. In fact, group comparison methods were originally developed 
specifically for such screens with replicates to prioritize siRNA hits. 

3.2.1. Multiple t-Tests 

T-test method is usually applied to HTS screens with replicates. It is used to 
evaluate if a sample activity is significantly different from negative references 
with the consideration of variance from replicates. Paired t-test eliminates plate-
to-plate variability by calculating t statistic based on intra-plate comparison, thus 
is preferred to unpaired t-test [87] (Equation 7). 

Equation 7 

= /√  

where  is the t score of sample i with n replicates,  and  are the mean and 
standard deviation of intra-plate difference between sample and reference across 
all plates, respectively. Instead of sample activity, the p value of t-test is used to 
rank samples. One condition of the t-test method is the assumption that  follows 
a normal distribution instead of t distribution. This is not always accurate 
especially for the small number of replicates in a standard HTS screen [87]. 
Wright and Simon introduced the randomized variance model (RVM) t-test 
method [88] that uses a corrected variance from an F-distribution based on the 
variance of replicates. RVM t-test method is found to improve the sensitivity and 
lower false-negative rate [62]. 
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3.2.2. Strictly Standardized Mean Difference (SSMD) Metric 

Alternatively, Zhang et al. introduced SSMD-based “hit” selection methods to 
HTS [86, 87, 89-92]. Similar to t-test, SSMD measures the statistical significance 
between samples and negative references. It is more robust with small sample size 
and can be used for inter-experiment comparisons [93]. Without a replicate, 
SSMD applies the constant error assumption to estimate the sample variance from 
variance of all measurements and is essentially equivalent to Z-score methods. 
With replicates, paired SSMD is appropriate because it considers plate-to-plate 
variations. SSMD of sample i with n replicates by uniformly minimal variance 
unbiased estimate (UMVUE) [89] is shown in Equation 8. 

Equation 8 

= Γ − 12Γ − 22 2− 1  

where  and  are the mean and standard deviation of all paired difference 

between sample and negative reference in the screen, and they can be substituted 

by median and MAD for the robust version. These parameters have been used for 

hit identification in several siRNA screens with good controls on false negative 

and false positive rates [86, 87, 89-92]. Moreover, SSMD-based cutoffs were also 

developed to quantify the significance of siRNA hits [78]. 

3.3. Cluster-Based Method 

While many hit identification methods depend solely on assay activities, recent 

advances also incorporate cheminformatics techniques. The underlying hypothesis 

is that a group of hits with similar chemical structure reinforce the confidence of 

positive signal based on the presumption that similar compounds tend to have 

similar biological activities. Klekota et al. [94] clustered a compound library 

using k-mode algorithm based on Daylight fingerprints [95], and the resulting 

compound clusters were scored using the p-value from the hypergeometric 

distribution (Fisher's exact test): 
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Equation 9 

( , , , ) = 	( , )
 

where m is the number of compounds in a cluster, r is number of potential active 
compounds, and n is the total number of potential hits in the compound library of 
N compounds. The method was able to identify 87% of known active compounds 
from a set of published test compounds, suggesting better performance than ones 
based on individual sample activity. 

Instead of defining one activity threshold, Yan et al. [96] adopted ontology-based 
pattern identification (OPI) method from microarray analysis [97, 98] to calculate 
minimum p-value for each cluster. The p value was based on the accumulative 
hypergeometric distribution in Equation 9, and computed for r = 1, 2, …min(m,n). 
The minimum p value was used to score the cluster. Retrospective studies on a set 
of HTS data showed a significant improvement of confirmation rates from 55% to 
85% over threshold based methods. 

The OPI-based method was also adopted for RNAi screens, called redundant 
siRNA activity (RSA) analysis method [99]. In this context, siRNAs were 
clustered by gene, and p-value (Equation 9) was calculated for each gene. The 
authors assessed the performance of RSA method using two genome-wide RNAi 
screens and found it significantly better than conventional activity-based methods. 

Molecular clustering can also be used to design a better HTS experiments. For 
example, molecular clusters have been used to reduce the total number of 
molecules in the primary screen by about two thirds [100]. Two common 
strategies used to cluster small molecules are similarity-based and scaffold-based 
clustering. Similarity-based clustering groups structurally similar molecules 
together based on whole molecule fingerprint. In this method, two molecules with 
similar fingerprint are believed to have overall similar chemical fragments, but it 
allows small changes even at its core as long as the overall similarity is 
maintained. On the other hand, scaffold-based clustering groups molecules based 
on a well-defined common core substructure. Scaffold based clustering often 
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produces scaffolds similar to medicinal chemists’ intuition. Scaffolds are often the 
starting points from which lead optimization proceeds. One commonly used 
approach to compute scaffolds is the molecular framework algorithm described by 
Bemis and Murcko [101, 102]. Wilkens et al. [103] also developed an exhaustive 
ring-based algorithm. It recursively identifies all possible ring-delimited 
substructures within a set of compounds. Molecules are grouped by shared ring 
substructures (scaffolds) so that common scaffolds obtain higher membership. 
Once all of the scaffolds for a set of compounds are identified, the hierarchical 
structural relationships between the scaffold structures are established. The 
complex network of hierarchical relationships is then utilized to navigate 
compounds in a structurally directed fashion. 

3.4. Bayesian Models 

Bayesian statistics were introduced to HTS hit identification in late 1990s and 
early 2000s [104-112]. Bayesian statistics uses probabilities with degrees of 
confidence to assess a hypothesis based on given evidences, and updates the 
probabilities with new evidences according to the Bayes’ theorem [113]. Besides 
assay activity, Bayesian approaches incorporate compound structure properties. 
As a robust and noise tolerant method, Bayesian inference method utilizes 
molecular descriptors, such as fingerprints [106, 114, 115] as representations of 
compound structures and the correlation between molecular features and 
biological activities were examined to build a probability distribution of active 
and inactive compounds [106]. Naïve Bayesian models such as Laplacian-
modified Naïve Bayesian (LMNB) [106, 116] and multiple-category Bayesian 
models (MCBM) [117, 118] simplify the joint probabilities by assuming the 
independence and equal importance of molecular descriptors. 

It is found that robust performance could be obtained even with noisy data. Zhang 
et al. integrated plate-wise and experiment-wise information for hit selection 
based on Bayesian hypothesis for siRNA screens [112]. The authors developed 
two models to compute the posterior probability for siRNA activities. One was 
based on negative control alone, and the other was based on both positive and 
negative controls. They found that the Bayesian methods outperformed the 
Median +/- k MAD method in both cases. 
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3.5. Dose-Response Analysis 

Single dose primary screens measure compound activity at a single concentration. 
As a result, they often fail to identify complex pharmacological actions such as 
weak partial agonists or antagonists. They are known to have high false positive 
and false negative rates [65]. In subsequent confirmation screens, assay activities 
for individual compound are usually measured at a series of concentrations to 
investigate the true compound activities. Due to more reliable signals from 
multiple dose experiments, assays with concentration-dependent activity 
measurements have also been adopted in some primary screens [119]. 

Dose-response curves are normally sigmoidal curves in log-based compound 
concentration. It is defined by four parameters: top asymptote (maximal response) 
T, bottom asymptote (baseline response) B, slope (Hill slope or Hill coefficient) h, 
and the EC50 value (the concentration at half-maximal effect). The Hill equation 
[120] for assay readout signal and compound concentration x is: 

Equation 10 

= + −1 +  

Three values derived from Equation 10 are usually used to describe compound 

potency in hit identification purposes, i.e.	 , fold change = , and the area 

under the dose-response curve (AUC) [121]. T, B, and AUC are labeled for a 
dose-response curve (blue) of an antagonist assay in Fig. 9. In general,  
represents compound potency;  measures efficacy and AUC measures total 
effects of a compound. In inhibitory assays,  is commonly used in place of 

. Partial agonists/antagonists are usually defined as compounds with reduced 

efficacy, i.e. = < 1 and < 1 ( = 1 when there’s no reference 

compound with full efficacy) [122]. In a simple second-order competitive inhibition 
(Fig. 9, black curve), T = 1, B = 0, and h = 1 [121]. AUC, on the other hand, 
measures both potency and efficacy simultaneously in a given dose range [121]. 

The pattern of dose responsive can also be attributed to different biological 
processes. Hill slope h implies the ratio of stoichiometry for enzyme-inhibitor or 
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across different biological systems presents a unique opportunity for 
understanding the interactions between chemical and biological systems. To this 
end, HTS data are being used repeatedly for comprehensive mining of chemical 
biology information across assays (bio-profiling). 

4.1.1.Chemical Properties 

Various cheminformatics methods are developed for HTS data analysis including 
clustering analysis, recursive partitioning, similarity search and pharmacophore 
modeling etc. [77] These methods were originally designed for predictive 
(quantitative) structure-activity relationship [(Q)SAR] models to select 
compounds for sequential screening or smart screening [124-126]. The predictive 
(Q)SAR models are continuously refined by new experimental results and 
ultimately used to aid the hit-to-lead process. Recently, a growing number of 
studies focused on compound activities in multiple physiological targets, i.e. drug 
polypharmacology [127, 128]. Che et al. [129] explored chemical properties of 
three million structures screened across 277 assays and identified 6% hits as 
“frequent hits” or “promiscuous hits”, i.e. molecules that are active across many 
independent assays. Novartis and others also used the scaffolds from large-scale 
HTS campaigns to generate novel antimalarial pharmacophores [130]. Known 
promiscuous chemical structural features can be used to filter out hits in the hit-to-
lead process. 

4.1.2. Biological Properties 

With large amount of HTS data, people have realized some molecules appear to 
be active across large number of assays, i.e. “frequent hits” or “promiscuous hits”. 
The mechanisms of these promiscuous hits have been extensively studied [131-
136]. One reason is compound aggregation [131-135]. Aggregated molecules 
interrupt enzymatic activity or cell viability in a nonspecific way. By mining an 
HTS database covering large chemical space and diverse biological functions, 
Che et al. identified many novel chemical features and several biological 
processes that are associated with a significant portion of frequent hits [129]. It is 
also noted that several marketed drugs also contained characteristics that are 
commonly associated with frequent hits. This observation suggested that simple 
filtering strategies for triaging compounds may result in discarding compounds 
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with good properties. Therefore, a novel strategy that overlaid chemical scaffolds, 
biological processes, along with empirical hit frequency data was developed. The 
risk of removing biologically-relevant frequent hits was reduced compared to the 
simple empirical hit frequency-based filtering strategy. 

In the work of Che et al. [127], Mode of action (MOA) and target analysis of 
frequent hits from 55 biochemical assays and 222 cellular assays suggest that 
frequent hits generated in biomedical screens are due to either signal artifacts 
associated with their physicochemical proprieties or non-specific binding to a 
large number of proteins, while frequent hits in cellular assays are usually related 
to disruption of critical biological pathways. Therefore, it is recommended that 
biochemical frequent hits should be removed from hit selection while cellular 
frequent hits should be retained for further evaluation. Similar concept has also 
been applied on screen sub-library design and compound-target diversity of HTS 
library can improve both hit rate and hit scaffold diversity [137]. 

4.2. Analysis of RNAi Screen Results 

Results of RNAi screens require additional follow-up studies based on gene 
functional annotations for hit prioritization to minimize false discovery rate. 
Biological implications of hits from gene function in known pathways and networks 
are often used during the downstream analysis. The analysis usually involves gene 
annotation, gene ontology, pathway analysis, protein-protein interactions, etc. Gene 
annotations are continuously revised by projects like the ENCyclopedia Of DNA 
Elements (ENCODE) [138-140] and modENCODE [141], which improves RNAi 
reagent library design [142] to reduce off-target effects [143]. Enrichment analysis 
on gene ontology (GO) is the most frequently used method for biological functional 
annotations for hits [144, 145]. In addition, GO and pathway analysis provides 
meaningful comparisons on hits from different screens on functional levels. For 
example, substantially more overlaps were identified from screening hits at the level 
of GO or pathways than at the gene level in the studies of human immunodeficiency 
virus (HIV) infection in mammalian cells [146] and the JAK/STAT signaling 
pathway using two different Drosophila cell types [147]. Tu et al. developed a 
network-based approach to link RNAi screening hits with PPI related to insulin 
signaling pathway, and it significantly enriched siRNA hits associated with insulin 
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resistance [148]. Furthermore, combinatorial studies on multiple screens are often 
useful for a comprehensive understanding of specific gene functions as well as their 
environmental dependence. For example, Schlabach et al. implemented pooled 
shRNA screens across four different cancer cell lines to identify shRNAs related to 
cell proliferation and viability in cancer cells and normal cells [149]. Bakal et al. 
designed 12 combinatory screens on 1395 dsRNAs with a total of 17,724 
combinatorial tests to study Drosophila JUN NH2-terminal kinase (JNK) 
phosphorylation network [150]. 

SUMMARY 

HTS is a powerful tool to identify active molecules from a large library. Recent 
scientific and technological advances improved HTS technique and dramatically 
enhanced its throughput and quality. In this chapter, we discussed the key 
components of HTS data analysis. For quality control of HTS results, we 
summarize key statistical principles and their applications on the removal of 
artifacts. For hit identification, we review the state of the art methodologies 
commonly applied in primary and secondary screens, and summarize their pros 
and cons. At the end, we discuss efforts for characterizing HTS hits. In summary, 
HTS data analysis provides rich opportunities from identifying novel molecular 
entities for modulating biological processes to understanding mechanism of action 
of molecules to exploring new applications of known molecules. With 
advancements in assay technologies and informatics methods, we anticipate that 
HTS will be increasingly popular and productive. 
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